首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The piezoelectric effect was first observed in polyvinylidene fluoride polymer (PVDF) in 1969, and the pyroelectric effect was found several years later. A number of additional ferroelectric polymers have been discovered since that time including the copolymer PVDF with trifluoroethylene (P(VDF-TrFE)), and the odd-numbered nylons. A large number of applications of piezoelectricity and pyroelectricity have been developed. The magnitudes of the effects in polymers are much lower than those of ferroelectric ceramics (an exception is the piezoelectric effect in porous polymers). However, other factors make these very desirable materials for applications. The polymers have low permittivities, low acoustic impedances and low thermal conductivities. They are available in large area sheets, flexible, and relatively low in cost. Major applications include microphones and loudspeakers, ultrasonic devices, SAW transducers, actuators, single-element infrared detectors and many others. This review will describe some of the lesser-known applications of these materials in the areas of tactile devices, energy conversion, porous polymers, property measurement, pyroelectric infrared sensors, shock sensors and space science. PACS 73.61.Ph; 77.84.-s; 82.35.Lr; 85.50.-n  相似文献   

2.
E. Fukada 《Ultrasonics》1968,6(4):229-234
The piezoelectric effect in polymers is usually explained in terms of the uniaxial orientation of the polymer crystallites and the classical piezoelectric property of these crystallites. Polarization caused by stress gradient seems to be necessary to the understanding of the geometrical relationship between stress and polarization. Studies of the temperature variation of the complex piezoelectric modulus have revealed a new type of relaxation phenomenon, which is closely related to elastic and dielectric relaxation. The possibility of a polymer piezoelectric transducer has been demonstrated by a microphone using an elongated film of poly-γ-methyl-L-glutamate. The physiological significance of piezoelectricity in biological polymers, such as its correlation with the growth mechanism of bone and with the sense of a mechanical stimulus, is worth further investigation.  相似文献   

3.
近年来,以聚合物为代表的高分子材料由于具有比其他光吸收材料(如半导体材料、碳基材料以及贵金属纳米材料)更好的柔性和粘弹性而受到广泛关注.本文基于等离子体再聚合技术和磁控溅射工艺在聚合物材料层上制备了具有等离激元多重杂化效应的光吸收结构,该结构具有宽谱高吸收特性.该结构的制备工艺简单易行,对不同聚合物材料具有通用性,在光学器件领域具有广泛的应用前景.  相似文献   

4.
The development of cellular piezoelectric polymers has shown very promising results thanks to their high d33 piezoelectric constants which make them candidates for many applications. Cellular piezoelectric polymers, known as ferroelectrets, are obtained by means of an activation process which consists in generating an internal dipole with electrostatic charges produced by internal electric discharges. The most common system for this activation process is the application of a corona discharge on the surface of the sample in order to produce a high internal electric field. The theoretical electrostatic model of the process which is widely used is the Sessler model which relates the internal surface charge density, the air and polymer layers thickness, the dielectric permittivity of the polymer and the Young's Modulus of the cellular material to the d33 piezoelectric constant. In our work, we relate the internal charges of the material with the d33 piezoelectric constant by means of a surface potential scanning of cellular polypropylene biaxially stretched samples. Samples were charged by a corona discharge controlled with a triode electrode. Surface potentials were high enough to generate internal discharges and obtain measurable d33 piezoelectric constants but low enough to be measured with spatial resolution by means of a 3 kV electrostatic probe. Surface potential profiles showed some deviations from the expected bell-shape profile due to the internal electric field generated by the internal static charge. These deviations can be numerically related to the measured d33 piezoelectric constant with the electrostatic Sessler model.  相似文献   

5.
随着化石燃料的日益枯竭,人类社会对能源的需求在不断增长。为了平衡能量应用需求并提升能量使用效率,开发高效能量转换材料与电化学储能材料成为当前研究的重要课题。导电聚合物基电极材料面临着相应储能器件能量密度、功率密度、循环性能不高的挑战,需进行结构改性提高电导率、改善界面性质。鉴于共轭高分子的电子结构、光学及电化学性质由共轭链骨架结构决定,对导电共轭聚合物进行结构修饰以提升其电荷传输性能和载流子迁移率,进而设计合成新型高迁移率导电聚合物基共轭聚合物是提高相应器件特性的关键所在。已有研究大多借助复杂的结构设计来实现提升迁移率,设计合成了结构简单,有助提升电荷迁移的新型窄带隙聚联苯胺基共轭聚合物聚物。通过光谱学及电化学方法对材料结构与性能进行了表征分析。采用核磁共振氢谱、红外光谱,X射线粉末衍射对单体及聚合物进行了结构表征,通过紫外光谱、紫外可见漫反射、循环伏安、计时电位、交流阻抗对其进行了光学及电化学性能测试。结果表明,成功制得具有预期结构的共轭聚合物,所得聚合物结晶性较佳,光学带隙Eoptg为1.85 eV,HOMO及LUMO能级分别为-5.44和-3.59 eV,前者高于,后者则低于大部分文献值,呈现可同时促进p-型和n-型掺杂的结构特性,具备增强材料容纳电荷能力的性能优势。聚合物储能特性受化学结构、晶体结构及微观形貌综合影响。改善材料微观结构特性有助于提升其电子电导率,但层状致密块体形貌特征又使其离子电导率受限。电化学性能测试结果显示,聚合物具有一定电化学活性,具有较小的电荷转移阻抗,具备基本满足使离子顺利扩散的条件,0.05 A·g-1时的放电比电容达256.6 F·g-1。研究结果表明,制得的联苯胺基窄带隙共轭聚合物在光电转换、储能及微型电子器件中有广阔的应用前景。  相似文献   

6.
Conversion Electron Mössbauer Sideband Spectroscopy is presented as a new and the most accurate method to study the dynamics of piezoelectric polymer materials at high frequencies. With raising amplitude of driven vibrations, complete oscillating behaviour of the Mössbauer sideband-intensities is found. The amplitudes of vibrations can be measured with an accuracy of 0.005 Å. Variations of the piezoelectric constant with temperature and frequency can be determined to better than 1%. Beside piezoelectricity the thermally induced dynamic behaviour of polymer surfaces can also be studied by CEMS.  相似文献   

7.
A flexible and transparent loudspeaker driven by piezoelectric polymer was proposed. The core structure was an assemblage of a flexible plastic film with piezoelectric polymer pasted over the whole surface. We fabricated a prototype loudspeaker using polyethersulfone (PES) and polyvinylidenefluoride (PVDF), and it had flexibility and transparency. Its acoustic characteristics and surface vibration mode were investigated. The investigation yielded low distortion characteristics in comparison with those of a loudspeaker made only of PVDF, and its advantages originated from the use of the plastic film as a diaphragm.  相似文献   

8.
Studies on piezoelectricity and pyroelectricity in polymers were initiated in materials of biological origin. A variety of polysaccharides, proteins and DNA were found to exhibit piezolectricity. Synthetic polymers such as polypeptides and optically-active polymers were also found to be piezoelectric. The piezolectricity and pyroelectricity in bone and tendon aroused interests in orthopaedists and led to studies on the electrical stimulation of osteogenesis. The discovery of large piezoelectricity in poled polyvinylidene fluoride opened a new field of research towards ferroelectric polymers. The Curie temperature was confirmed in the copolymers of vinylidene fluoride and trifluoroethylene. The characteristic changes of molecular conformation and associated crystalline structure were revealed at the temperature range of the phase transition. Piezoelectric and ferroelectric-like properties were found in the copolymers of vinylidenecyanide and vinylacetate, which are amorphous and transparent.  相似文献   

9.
莫喜平 《物理》2006,35(5):414-419
文章综述了新型水声换能器设计与换能器新技术的重要进展.主要涉及:稀土超磁致伸缩材料、弛豫铁电材料、压电聚合物薄膜等新材料的发展及其水声换能器的新设计,基于新结构的新型水声换能器,利用不同能量转换机理的新型水声换能器,宽带换能器新技术等等;对于接收型换能器着重介绍了光纤水听器和矢量水听器.  相似文献   

10.
Laser Raman spectroscopy is an effective tool for the study of biodegradable polymers, which play a vital role in the new developments in coronary implants such as stents. There is much excitement around the potential capabilities of synthetic biodegradable polymers and the effect they will have on the design and function of implanted devices. In the present investigation, heparin‐conjugated biodegradable copolymers were evaluated for their durability as drug‐eluting stent coatings. Laser Raman spectroscopic studies were carried out and spectra recorded and analyzed of explanted stents coated with different amounts of polymer alone, showing the existence of different levels at different quantities of polymer. The polymer was detected on every stent analyzed. On the stents coated with a thick layer of polymer, a firm layer of polymer still existed on the stent. In contrast, this layer was degraded and spread around on the stents coated with only a thin layer of the polymer. This indicates that the polymers used in the stents in the present investigation exhibit acceptable biodegradability. Such polymers can be used as efficient drug carriers, as these materials show good degradation after the stipulated period. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
Novel photopolymers containing side groups based on o-methoxycinnamylidenemalonic acid, which undergo selective photo-crosslinking without destruction of the polymer backbone upon irradiation at 5>395 nm, have been developed for potential applications as combined positive-negative resists and multilayer resists. An XeCl excimer laser (5=308 nm, F=20 ns) was used as the irradiation source to study the ablation and microstructuring characteristics of the polymers. The materials were structured before and after crosslinking. The ablation rate was analysed by varying the fluence (0.01-10 J/cm2) and the number of pulses for a given irradiation area. Etch rates of about 2 7m per pulse at a fluence of 9 J/cm2 could be achieved for all polymers. The polymer with triazene groups reveals a higher etch rate at low fluences (less than 300 mJ/cm2) than the polymer without a triazene group. The experimentally observed threshold fluence for the triazene-containing polymer is about 30 mJ/cm2. Using a Schwarzschild-type reflection objective (152), microstructures with a resolution in the micron range were produced on both polymer films. The quality of the structures was evaluated by scanning electron microscopy. The results indicate that the new polymers could be used as resists for excimer laser ablation lithography.  相似文献   

12.
Susceptibility of polymer surfaces to acute visibility upon scratching has presented a serious challenge to the polymer industry for quite some time. The ability to design polymers with good scratch visibility resistance requires extensive knowledge about scratch deformation mechanisms and their propensity for light scattering. After examining the physical nature of human vision and surface optical characteristics, a new methodology is developed to quantitatively determine the onset of scratch visibility of polymers via an inexpensive desktop scanner. Taking into account the sample background color, texture, gloss and feature size, the proposed methodology can consistently and reliably determine polymer scratch visibility resistance regardless of the sample surface characteristics. Good correlation is found between this method and actual human perception. Quantitative analysis of the scratched surface is carried out with scanning laser profiling confocal microscopy and strong correlations among scratch visibility, observation angle and various scratch damage features such as roughness and scratch grooves are established. The proposed approach will greatly assist the development of scratch-resistant polymeric materials where surface aesthetics is of primary concern.  相似文献   

13.
The large number of degrees of freedom in the design of piezoelectric transducers requires a theoretical model that is computationally efficient so that a large number of iterations can be performed in the design optimisation. The materials used are often lossy, and indeed loss can be used to enhance the operational characteristics of these designs. Motivated by these needs, this paper extends the one-dimensional linear systems model to incorporate frequency dependent elastic loss. The reception sensitivity, electrical impedance and electromechanical coupling coefficient of a 1–3 composite transducer, with frequency dependent loss in the polymer filler, are investigated. By plotting these operating characteristics as a function of the volume fraction of piezoelectric ceramic an optimum design is obtained. A device with a non-standard, high shear attenuation polymer is also simulated and this leads to an increase in the electromechanical coupling coefficient. A comparison with finite element simulations is then performed. This shows that the two methods are in reasonable agreement in their electrical impedance profiles in all the cases considered. The plots are almost identical away from the main resonant peak where the frequency location of the peaks are comparable but there is in some cases a 20% discrepancy in the magnitude of the peak value and in its bandwidth. The finite element model also shows that the use of a high shear attenuation polymer filler damps out the unwanted, low frequency modes whilst maintaining a reasonable impedance magnitude.  相似文献   

14.
Large piezoelectric d33 coefficients around 600 pC/N are found in corona-charged non-uniform electrets consisting of elastically “soft” (microporous polytetrafluoroethylene PTFE) and “stiff” (perfluorinated cyclobutene PFCB) polymer layers. The piezoelectric activity of the two-layer fluoropolymer stack exceeds the d33 coefficient of the ferroelectric ceramic lead zirconate titanate (PZT) by more than a factor of two and that of the ferroelectric polymer polyvinylidene fluoride (PVDF) by a factor of 20. Soft piezoelectric materials may become interesting for a large number of sensor and transducer applications, in areas such as security systems, medical diagnostics, and nondestructive testing. Accepted: 9 November 1999 / Published online: 3 December 1999  相似文献   

15.
含稀土光学树脂的制备和性能研究   总被引:4,自引:0,他引:4  
王冬梅  林权  张俊虎  杨柏 《发光学报》2003,24(4):325-334
稀土高分子材料是通过稀土金属与高分子的复合而制备的一类兼具稀土光、电、磁等特性和高分子质轻、抗冲击和易加工等优良综合性能的功能材料。稀土高分子材料主要分为两大类型:一类是稀土化合物作为掺杂剂均匀分散到高分子的单体和聚合物中;第二类是稀土化合物以单体形式参与聚合或缩合以及稀土化合物配位在聚合物的侧链上获得的键合型稀土高分子材料。本文综述了国内外在稀土金属与高分子复合材料方面的研究进展及相关应用,介绍了本组在合成含稀土化合物和配合物光学树脂方面的研究情况,通过把稀土配合物复合到苯乙烯和甲基丙烯酸共聚体系中,获得了发光强度高、荧光寿命长、透光率高、机械性能好的光学树脂,并对今后工作方向进行了展望。  相似文献   

16.
Surfaces and interfaces in polymer-based electronics   总被引:1,自引:0,他引:1  
Research on electronics applications such as light-emitting devices for flat-panel displays, transistors, sensors and even solid state lasers based on conducting polymers is presently under way and in some cases has reached the stage of prototype production. The mechanisms for charge injection and conduction in these materials are being studied, as are the physics of luminescence and its quenching. Lately, research into controlling film morphology through self-organizing techniques also has gained interest. Though the present interest in conducting polymers mainly concerns the pristine semiconducting state, doped conducting polymers are also studied for potential use in many applications.

In this paper, we present an overview of some of the central issues in surface and interface science in the field, as well as provide our view on what may lie ahead in the future. Specifically, the importance of metal/polymer, polymer/metal and polymer/polymer interfaces is addressed. We illustrate these using polymer-based light-emitting devices, though the same type of issues appear in other polymer-based applications such as transistors and solar cells.  相似文献   


17.
New piezoelectric polymer for air-borne and water-borne sound transducers   总被引:1,自引:0,他引:1  
Acoustic transducers made of a charged cellular polymer called EMFi have been designed and investigated with respect to air-borne and water-borne sound. The longitudinal transducer constant is around 90 pC/N, strongly exceeding the values of other piezoelectric polymers. This is mainly attributed to the very low Young's modulus of about 2 MPa. The acoustic impedance is only 2.6 x 10(4) kg/(m2 s) and results in good matching to air but strong loading under water. Due to this strong loading, a pronounced reduction of resonance frequency from 300 kHz in air down to 17 kHz under water is observed. The experiments indicate that fluid loading is not only mass-like but also compliant, reducing the transducer's sensitivity below the resonance frequency of about -63 dB re 1 V/Pa (0.7 mV/Pa) in air to -71 dB re 1 V/Pa under water. This compliance is attributed to the medium's compressibility. Piezoelectricity of EMFi films is limited to temperatures below 70 degrees C; above, irreversible discharge of trapped charges takes place. Furthermore, a second type of EMFi, called "OS" was investigated, having a piezoelectric constant of 15 pC/N and a Young's modulus of 6 MPa. In quasi-static sensor measurements, the piezoelectric constant increases with the applied load. This nonlinearity explains the higher values reported in other publications on the same materials.  相似文献   

18.
武峥  周嘉仪  曹艺  马柯  贾艳敏  张以河 《物理学报》2014,63(2):27701-027701
1-3压电复合材料的压电、介电及铁电性能要远远优于0-3压电复合材料.在制备传统的0-3复合材料过程中引入电泳技术,使得压电颗粒在聚合物基体中取向排列,制备得到伪1-3复合材料.实验结果表明:在制备PZT/环氧树脂0-3复合压电材料固化过程中,采用500 V/mm,4 kHz的电场对其进行电泳辅助取向,可使得颗粒呈现珍珠串状排列,得到伪1-3复合材料;其压电、介电、铁电性能均比原来的0-3复合材料有显著的提高.电泳辅助制备技术用于制备伪1-3复合压电材料具有操作简单、成本低廉、压电、介电、铁电性能显著提高等优点,在智能传感领域具有很好的实际应用前景.  相似文献   

19.
陈钢进  韩高荣 《物理》2002,31(8):521-526
从热刺激放电技术基本原理出发,讨论了极化聚合物材料热刺激电流的基本特性,并根据文献中报道的实验结果,针对极化聚合物材料研究中的一些热点问题(如极性生色团分子的聚向驰豫机制、极化后的物理老化、键合型材料稳定性增强机制等)介绍了热刺激放电技术的应用。  相似文献   

20.
Possible applications of polymer materials in optical systems and devices are defined mainly by their optical properties in terms of refractive indices, transmission, dispersion and thermo-optic coefficients. We have examined more than twenty types of optical plastics including basic, commercial and some new development materials. Detailed measured refractometric data and transmission spectra in the visible and near infrared regions are presented. Variation of refractive indices with temperature is considered to obtain the thermo-optic coefficients. Discussion on dispersion of studied optical polymers and comparison to glass is included on the base of a number of dispersive characteristics and curves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号