首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
用恒电位法制成以9,10-蒽醌-2-磺酸钠盐(AQS)为掺杂阴离子的导电聚吡咯(PPy)电化学电容器电极材料,并采用循环伏安(CV)、充放电测试、电化学阻抗(EIS)等方法表征电容性质.结果表明,与高氯酸阴离子(ClO4-)掺杂的PPy相比,PPy/AQS电极材料不仅单位质量电容和电极稳定性得到提高,工作电压范围也得以扩大.在1mol·L-1的氯化钾中,工作电压为-0.6至0.6V,扫描速率为50mV·s-1时其单位质量电容达到491F·g-1,比PPy/ClO4-电极材料提高1.5倍.这是由于AQS自身良好的氧化还原活性和AQS掺杂有利于聚吡咯膜形成疏松多孔的纳米及亚微米颗粒结构而导致的.  相似文献   

2.
采用表面活性剂蒽醌-2-磺酸钠盐(AQS)辅助化学氧化原位聚合法制备PPy纳米纤维材料,考察反应时间、搅拌速率、基体种类及有无表面活性剂对PPy纳米纤维材料微观形貌和电导率的影响。结果表明,当反应时间为4h、搅拌速率为200r/min时,以PET无纺布为基体在表面活性剂AQS调控下可制备微观形貌及电导率综合性能最佳的PPy纳米纤维材料。  相似文献   

3.
随着人类社会对能源需求量的增大,高效储能材料的开发备受关注。导电高分子-金属氧化物复合材料具备了作为储能器件正极材料的诸多特质,故成为了相关研究领域的热点方向之一。本文以聚苯胺(PAni)和聚吡咯(PPy)为例,综述了近年来导电高分子-金属氧化物复合材料用作锂离子电池正极材料方面的研究进展。概述了此类材料中各组分如何通过有机/无机协同作用实现材料电化学性能的提升,介绍了此类材料的制备方法,结构特点及常用表征手段,以及材料的电化学性能特征。  相似文献   

4.
聚吡咯(PPy)具有良好的电荷传输能力,PPy与金属氧化物、硫化物复合材料具有优异的电化学性能。本文综述了硬模板、软模板存在下纤维状、管状、球状等不同形貌PPy的制备,PPy与单金属/双金属氧化物、硫化物可构筑纤维状、管状、球状等不同形貌的复合材料,着重介绍了化学氧化聚合法制备不同形貌的PPy及其复合材料。本文还概述了不同形貌的PPy及其与金属氧化物、硫化物复合材料在超级电容器、锂离子电池、传感器等电化学领域的应用。  相似文献   

5.
张国权  杨凤林 《催化学报》2007,28(6):504-508
在水溶液中制备了掺杂蒽醌磺酸盐(AQS)的聚吡咯(PPy)/玻碳复合膜修饰电极,采用循环伏安法和旋转圆盘电极技术研究了该修饰电极在不同pH值溶液中的电化学行为以及在pH=5.5的磷酸盐缓冲溶液中对氧还原反应的电催化性能和动力学.结果表明,与裸玻碳电极相比,PPy膜的存在不仅降低了AQS的反应电位和峰电位差,而且增大了其氧化还原反应的峰电流,H2AQ/HAQ-氧化还原对的电离常数为9.5.AQS/PPy膜修饰电极上氧的还原主要是两电子还原为H2O2的不可逆过程,H2AQ对氧还原反应起主要催化作用,还原过程符合异相氧化还原催化机理.该修饰电极具有良好的电化学重现性.  相似文献   

6.
该文阐述了近年来钴金属有机骨架(Co-MOFs)材料在锂离子电池负极材料中的应用研究进展,分别对Co-MOFs材料及Co-MOFs衍生的氧化钴、氧化钴/碳复合材料、硫化钴/碳复合材料等用作锂离子电池负极材料进行了分类总结,旨在为广大研究者提供相关方面的信息.  相似文献   

7.
在Pt微盘电极上用恒电流技术在电流密度为0.05-10 mA·cm-2范围合成了1 滋m厚度的聚吡咯(PPy)膜. 采用循环伏安(CV)、计时电势、交流阻抗(EIS)技术考察了不同聚合电流下得到的聚吡咯的电化学行为. 结果表明, 最佳聚合电流区间为1-5 mA·cm-2, 对应的电势一般在3.9-4.1V (vs Li/Li+)之间, PPy的掺杂度为30%左右. 在这一聚合电流密度范围得到的PPy具有较大的电化学容量, 较佳的电化学反应可逆性能、较高的氧化还原电势数值和稳定性能. 处于氧化态的聚吡咯具有优良的导电性. 上述条件下得到的PPy适合于作为锂离子二次电池的正极材料. 适当选择电流, 可以得到有相对完整的共轭仔键的长链结构的PPy 膜.  相似文献   

8.
室温下, 采用原位聚合法, 以吡咯(PY)为单体, 氯化铁(FeCl3·6H2O)为氧化剂, 在塑料基片上聚合生长了聚吡咯(PPy)纳米微球. 然后在聚吡咯基片上生长ZnO种子, 将表面种有ZnO种子的PPy元件置于六次甲基四胺与硝酸锌的混合溶液中, 90 ℃水浴中, 在PPy微球上生长了ZnO纳米棒, 合成了PPy/ZnO异质纳米复合材料. 分别通过X射线衍射仪(XRD)和场发射扫描电镜(FESEM)对PPy/ZnO异质纳米复合材料的结构和形貌进行了表征. 制备了塑料基的PPy/ZnO异质纳米复合材料气体传感器, 在室温下, 对10×10-6-150×10-6 (体积分数)浓度范围的氨气进行了气敏测试, PPy/ZnO气敏元件对氨气响应的灵敏度基本呈线性关系, 且对甲醇、丙酮、甲苯等有机气体表现出很好的选择性. 最后, 对PPy/ZnO异质纳米复合材料的形成机理进行了简要分析.  相似文献   

9.
以聚苯乙烯(PS)和锌盐中和的磺化聚苯乙烯(Zn-SPS)膜为基体, 在超临界二氧化碳(SC-CO2)环境中用化学氧化法原位制备了聚吡咯(PPy)导电复合材料. 由于SC-CO2对聚合物基体的强溶胀作用, 吡咯分子高效地扩散到基体内部进行聚合而形成导电通路, 得到比传统的水溶液法更高的电导率. 聚合物基体的性质对复合材料的导电性和形貌产生重要影响. 在相同条件下, Zn-SPS/PPy的电导率比PS/PPy高3~4个数量级, 而它们的体积逾渗阈值分别为2.7%和6.2%, 远远低于理论预测值(16%).  相似文献   

10.
发展了基于超分子化学的新方法实现了对石墨炔的原位氮掺杂,通过利用石墨炔与有机共轭分子间强的ππ作用,原位制备了石墨炔/卟吩复合材料薄膜,并用作锂离子电池的负极材料,其比容量增加到了1000 mAh∙g−1,该复合材料表现出优良的倍率性能和循环稳定性,为可控制备掺氮石墨炔复合材料提供了新的思路。  相似文献   

11.
通过多巴胺的原位聚合,将聚多巴胺(PDA)均匀包裹在钛纳米管(TNTs)表面,再在氮气保护下经过高温灼烧,制备得到介孔碳-二氧化钛(MC-TiO_2)纳米复合材料,进一步采用氢氟酸(HF)对该复合材料进行处理可调控其中二氧化钛的含量。将HF处理前后的复合材料分别制成锂离子电池的负电极。采用透射电镜(TEM)、扫描电镜(SEM)、氮气吸附测试、X射线衍射(XRD)、热重分析(TG)等多种测试手段对复合材料进行了表征。研究结果表明:由这两种电极构成的锂电池均有较好的充-放电效率和循环稳定性;未经HF处理的复合材料(MC-TiO_2)作负极的电池的电容量较低(约130 mA·h/g),而经HF处理的复合材料(MC-TiO_2)_a作负电极的电池的电容量有显著提升,首次放电容量达到1 100 mA·h/g,之后的59次循环中放电容量稳定在360mA·h/g。  相似文献   

12.
基于静电吸附作用制备PPy/CNTs复合材料   总被引:1,自引:0,他引:1  
通过添加十二烷基苯磺酸钠(SDBS), 在碳纳米管(CNTs)表面引入具有静电吸附作用的基团, 使吡咯单体附着于CNTs表面, 然后发生化学原位聚合, 得到了由片状聚吡咯(PPy)包覆CNTs所构成的PPy/CNTs复合材料, 开辟了一条易于工业化生产制备PPy/CNTs复合材料的途径. 所得材料和CNTs借助傅立叶变换红外光谱、扫描电子显微镜、透射电子显微镜等设备进行了成分和形貌的表征; 并将所得材料组装成电化学超级电容器, 进行了电化学性能测试. 研究结果表明, 加入SDBS后, 吡咯单体能很好地吸附于CNTs表面; CNTs的应用细化了PPy的颗粒, 改善了PPy的导电性能和机械性能, 使PPy/CNTs复合材料呈现出多孔状; 其电化学容量达到101.1 F·g-1(有机电解液), 是同样制备条件下所得纯PPy电化学容量(19.0 F·g-1)的5倍多, 约是所用纯CNTs电化学容量(25.0 F·g-1)的4倍.  相似文献   

13.
以高磺化度的磺化聚芳醚酮砜(SPAEKS)和吡咯(Py)为原料,通过原位聚合的方法制备了含有不同吡咯含量的SPAEKS/PPy复合膜.红外谱图表明SPAEKS聚合物中的磺酸基团与聚吡咯(PPy)中的亚氨基基团之间形成了强烈的相互作用.扫描电镜照片显示PPy能够均匀地分散在SPAEKS聚合物基体中,没有发生团聚现象.通过对复合膜的性能测试发现PPy的引入提高了复合膜的热稳定性,降低了复合膜的吸水率,改善了其水溶胀性.同时膜中水的脱附系数下降,提高了膜的保水能力.SPAEKS/PPy-3复合膜的甲醇渗透系数达到了1.18×10-7cm2/s,明显低于纯SPAEKS膜的8.52×10-7cm2/s,而其质子传导率虽有所降低,但在25℃和80℃仍然分别达到了0.039S/cm和0.061S/cm,能够满足质子交换膜对质子传导率的要求.研究结果表明,聚吡咯与SPAEKS中磺酸基的摩尔比为0.99的复合膜有望在直接甲醇燃料电池中得到应用.  相似文献   

14.
刘学  马华  徐恒  计海聪  王栋 《应用化学》2020,37(5):555-561
高性能的柔性锂离子电池对可穿戴电子设备的发展具有重要意义。采用化学氧化法在聚对苯二甲酸乙二醇酯(PET)无纺布基材上原位聚合聚吡咯(PPy),并通过控制反应条件得到不同形貌的聚吡咯电极材料。当反应体系中剪切力较小时,得到纳米线状聚吡咯(PPy-NW/PET),反之,为纳米颗粒形貌的聚吡咯(PPy-NP/PET)。PPy纳米线的平均直径为460 nm,在包覆PET纤维的同时相互交叠,形成了三维网状导电通道。该PPy/PET可以直接作为无粘结剂的柔性电极材料。电化学测试结果表明,PPy-NW/PET电极材料的性能更优异,其首次放电和充电的比容量分别为124和98 mA[DK1]·h/g,且具有良好的柔性和稳定性。本文对柔性、轻质电极材料的制备及其在储能领域的应用提供了很好的思路。  相似文献   

15.
以介孔碳(MC)为导电和支撑介质, 在多元醇体系中通过简便的化学还原方法制备纳米结构的介孔碳-锡(MC-Sn)复合材料. 采用扫描电子显微镜(SEM)、高分辨透射电子显微镜(HRTEM)和恒电流充放电实验对所得产物的形貌、结构及电化学性能进行表征. 结果表明, 大量的Sn纳米颗粒均匀且致密地附着在介孔碳上. 作为锂离子电池负极材料, MC-Sn复合物表现出了较好的循环性能和倍率性能. 例如, 在100 mA•g-1的充放电速率下循环40圈, 其放电比容量保持在721.5 mAh•g-1; 当充放电速率增大到1 A•g-1时, 其放电比容量仍高达265.8 mAh•g-1. 简单的制备方法和优越的储锂性能,使得MC-Sn复合材料成为一种理想的高性能锂离子电池负极材料.  相似文献   

16.
本文采用改进的Hummers法制备氧化石墨烯(GO),利用电化学沉积法制备聚吡咯(PPy)和GO/PPy复合材料并对其作为超级电容器电极材料进行了探究。通过XRD、FT-IR、AFM和SEM对其结构和形貌进行了表征,研究表明:PPy成功在GO片层上生长,并改变了原来PPy类逗号形的形貌,形成了无定形结构的GO/PPy复合材料。循环伏安法(CV)对不同电沉积时间的PPy和GO/PPy电容量进行了测试,发现电沉积时间为17min的PPy和GO/PPy均表现出较优的电容性能。在1A/g电流密度下进行恒流充放电(CP)测试,通过比较发现GO/PPy比PPy的比电容量提高了82. 3%,达到332. 37F/g。  相似文献   

17.
为了开发电化学性能优异的新型金属有机骨架基衍生材料,以对苯二甲酸、三氯化铬和九水合硝酸铁作为原料,通过微波法合成了双金属有机骨架材料(Fe-Cr-MOF)。在氮气保护下,对Fe-Cr-MOF进行高温硒化得到纳米颗粒状Fe-CrSe/C复合材料,用作锂离子电池负极。结果表明,在100 mA·g-1的电流密度下,Fe-CrSe/C电极的首圈可逆比容量达到958.4 mAh·g-1,循环150圈后比容量还能维持891.6 mAh·g-1。  相似文献   

18.
蒽醌磺酸盐的高效液相色谱分离及其定量测定   总被引:1,自引:0,他引:1  
吴慧常  张蕾  高健明 《色谱》1989,7(1):46-48
2,6-蒽醌二磺酸盐是GCN士林黄染料中间体,它由蒽醍磺化而成,由于磺化过程中还能生成2,7-蒽醌二磺酸盐及其它异构体,影响产品质量。以往在染料中间体分析中常采用薄层层析和纸层析作为分离手段,但分析速度慢,分离效率较差。据文献报道,高效液相色谱对于蒽醌磺酸盐的分离和分析得到有效应用。  相似文献   

19.
聚吡咯(PPy)是一种性能优异的导电高分子材料,近年来的研究热点集中于PPy及其复合材料在电化学方面的应用,而对于PPy复合材料的特殊微形貌以及吸附性能的关注较少。本文介绍了关于PPy微观形貌的合成方法,综述了采用硬模板和软模版法合成纤维状、管状、球状、多孔状和其他不同特殊微形貌的PPy及其复合材料,包括PPy/金属单质、PPy/金属氧化物、PPy/染料以及PPy/非金属单质等复合材料,并进一步分析了PPy及其复合材料不同形貌之间的差异,得出微形貌的差异可以影响材料性能的结论。简述了目前将PPy复合材料应用于吸附领域的报道,介绍了不同微形貌聚吡咯材料对于其吸附性能的影响,分析了特殊形貌PPy及其复合材料对染料、重金属展示出来的优良吸附性能,指出PPy复合材料在吸附领域的巨大应用前景与商业价值。  相似文献   

20.
沈宸  陆云 《高分子学报》2014,(10):1328-1341
从方法学上总结了目前石墨烯/导电聚合物复合材料的制备途径,重点介绍了其在能源领域作为超级电容器电极材料的应用,并归纳了其在传感器材料、燃料电池、太阳能电池、电致变色器件及锂离子电池等方面的研究进展.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号