首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 168 毫秒
1.
基于功率谱的反射镜面形评价   总被引:1,自引:0,他引:1       下载免费PDF全文
杨飞  安其昌  张景旭 《中国光学》2014,7(1):156-162
针对表面高度均方根(RMS)难以描述大尺度波动以及刚体位移鲁棒性差的缺点,提出了使用功率谱(PSD)对大口径望远镜系统中主反射镜面形进行评价;结合Zernike多项式,对PSD的分解运算进行了分析,讨论了Zernike多项式的频谱能量分布;将该方法用于Φ500 mm反射镜面形检测数据的处理,得出实际反射镜表面面形频域能量分布情况。结果表明:对于大口径反射镜,使用PSD的评价方式对于指导加工检测以及望远镜系统误差的分配具有更实用的意义。最后,基于PSD提出了一种评价反射镜面形的子孔径非相关拼接方法,该方法适用于大口径望远镜中大口径光学元件的面形精度评价。  相似文献   

2.
空间薄膜反射镜的研究发展现状   总被引:2,自引:0,他引:2  
空间薄膜反射镜由于具有面密度低,易于折叠展开且成本低等优点很好地满足了空间反射镜的超轻量、超大口径的要求,因此在空间科学研究领域倍受关注。介绍了空间薄膜反射镜的发展,包括薄膜反射镜的理论基础,充气式薄膜反射镜和静电拉伸薄膜反射镜及其他类型的反射镜的代表成果。而后对空间薄膜反射镜的技术难点进行了分析;重点讨论了薄膜反射镜用聚酰亚胺薄膜的生产情况以及薄膜反射镜的面形控制、面形检测和反射镜支撑结构的设计。最后总结了反射镜近期的研制情况、存在的问题和应用发展趋势。认为空间薄膜反射镜作为国内外空间科学的热点,在未来的几十年内将在航天领域的太空望远镜、空间侦察相机、人造太阳、微波天线等方面得到广泛应用。  相似文献   

3.
大口径轻质非球面反射镜制造技术研究   总被引:4,自引:0,他引:4  
研制某卡塞格林光学系统的关键技术之一是通光口径超过1000mm的轻质抛物面主反射镜。该反射镜相对口径为1/2,减重率为65%,是目前国内最大口径的轻质非球面反射镜。成功地解决了大口径轻质镜坯的制造和大口径轻质非球面镜的加工与检测方面的难题。通过对高比刚度轻质镜的设计和进行CAD工程分析以及选用合理的光学材料,采用计算机控制的数控钻铣技术制造出了反射镜镜坯。在经典光学加工技术的基础上,摸索到了针对大口径轻质镜的支撑、加工与检测方面的技术。检测结果表明,该反射镜的研制达到了各项设计指标,其面形精度的均方根值RMS=0 029λ(λ=633nm)。  相似文献   

4.
 根据中国“宋”标准节点望远镜系统要求,设计了用于望远镜波前误差测量的夏克哈特曼(S-H)传感器光学系统。从望远镜衍射极限成像和观测星等要求出发,对S-H的采样点数选取和波面重建精度进行分析计算,根据所选微透镜阵列和“宋”望远镜光学参数进行S-H准直镜的消像差设计,采用两组双胶合透镜实现了480 nm~680 nm波长范围的系统衍射极限成像。设计的系统能够实现6等星的目标测量,测量精度0.05"。根据设计结果搭建了实验系统,对主镜初始状态和校正之后的波前误差进行了测量,并将S-H测量结果与4D干涉仪测量结果进行了比较。实验结果表明:所设计S-H系统测量精度0.008 μm(RMS),能够满足“宋”望远镜的技术要求。  相似文献   

5.
为降低支撑控制难度和节约制造成本,同时又保证在线光学加工-检测所需的支撑精度,提出超大口径反射镜的支撑布局优化方法。研究支撑状态下的反射镜面形精度,解决面形拟合和优化目标提取的问题;以斜率均方根(SlopeRMS)为目标建立非圆形口径的超薄反射镜加工支点布局优化模型,使其具备自适应有限元分析的功能;针对工程中大量使用的轻量化反射镜,设计出适应其几何变化的支撑转换结构,并展开以面形均方根(RMS)误差为目标的支点位置的优化设计;通过30m口径望远镜(TMT)第三镜和某2m口径反射镜的支撑布局优化,验证了所采用方法的效果。算例结果表明,所提方法具有较好的几何适应性,布局优化后支撑系统的精度满足超大口径反射镜的光学制造要求。  相似文献   

6.
大口径非球面主反射镜的装调方法研究   总被引:2,自引:2,他引:0  
韩娟  段嘉友  张钧 《应用光学》2012,33(3):490-495
针对大口径非球面主反射镜(简称主镜)的装调要求,对比分析常用大口径非球面面形检测方法,提出该类主镜检测面形的最佳方案。在主镜的装调过程中,通过对主镜的固定方式和主镜变形补偿这2个关键环节的阐述,总结主镜固定的难点及主镜变形的原因,提出一套全新的装调方案,以旋转消重力法进行检测,并用专用工装实时定心调节,再用辅料焊接法固定主镜与中心轴,最后采用辅助支撑对主镜组件进行最终固定修正。装调结果表明:对于大口径非球面反射镜,装调完成后的主镜面形精度Rms0.03(=632.8 nm)。  相似文献   

7.
针对表面高度均方根(RMS)难以描述大尺度波动以及刚体位移鲁棒性差的缺点,提出了使用功率谱(PSD)对大口径望远镜系统中主反射镜面形进行评价;结合Zernike多项式,对PSD的分解运算进行了分析,讨论了Zernike多项式的频谱能量分布;将该方法用于Φ500 mm反射镜面形检测数据的处理,得出实际反射镜表面面形频域能量分布情况。结果表明:对于大口径反射镜,使用PSD的评价方式对于指导加工检测以及望远镜系统误差的分配具有更实用的意义。最后,基于PSD提出了一种评价反射镜面形的子孔径非相关拼接方法,该方法适用于大口径望远镜中大口径光学元件的面形精度评价。  相似文献   

8.
大口径轻质SiC反射镜的研究与应用   总被引:1,自引:0,他引:1  
赵汝成  包建勋 《中国光学》2014,7(4):552-558
介绍了大口径轻质碳化硅反射镜镜坯的基本结构、性能测试指标、国内应用及发展前景;阐述了碳化硅凝胶注模成型(Gel-casting)、反应烧结SiC(RB-SiC)与压力成型、常压烧结SiC(SSiC)两种国内主要制备大口径轻质碳化硅反射镜的方法;并对两种方法制备得到的ø1.45 m碳化硅镜坯的性能、测试数据及光学加工后的光学特性进行分析和比对,提出存在的问题,以供商榷,进而促进国内大口径轻质碳化硅反射镜的研究和发展。  相似文献   

9.
大口径光学反射镜的材料选择与研制一直是空间光学系统的主要核心技术,采用凝胶注模成型(Gel-Casting)技术一次性完成1.45m碳化硅反射镜镜坯成型,再经1 700℃反应烧结得到一块完整的碳化硅镜坯。介绍了大口径轻质碳化硅反射镜镜坯的基本结构,系统阐述了SiC反射镜镜坯的制备工艺。结合金相显微镜、XRD物相分析及力学性能测试对SiC镜坯的组织结构进行分析,测试数据表明:1.45m碳化硅反射镜镜坯的密度≥3.0g/cm3,抗弯强度≥330 MPa,弹性模量≥340GPa,轻量化率74%。碳化硅反射镜镜坯的力学性能均能满足空间光学系统设计的要求。  相似文献   

10.
地基大口径望远镜系统结构技术综述   总被引:6,自引:0,他引:6  
张景旭 《中国光学》2012,5(4):327-336
概述了地基大口径望远镜的发展状况,阐述了口径变大的意义及实现的关键技术途径。概括了当前大口径望远镜的应用价值。介绍了国外5种典型的大口径望远镜系统,它们代表了当前地基大口径望远镜发展的最高技术水平。从跟踪架、主望远镜筒、主镜支撑及次镜支撑调整几个方面论述了大口径望远镜的结构特点及关键技术。最后,总结了大口径望远镜系统的发展趋势,指出其光学系统已从同轴系统向离轴系统发展并极具应用前景。  相似文献   

11.
王富国 《光子学报》2014,40(6):933-936
为了研究温度和支撑方式对大口径SiC主镜用于地基望远镜的影响,基于1.2 m SiC主镜建立了有限元模型,分析了主镜在被动支撑和自由膨胀时,恒定温度场,轴向温度梯度,径向温度梯度和内外温差等对主镜面形的影响.结果表明,存在温度梯度时,支撑方式影响不明显,无论是被动支撑还是自由膨胀,镜面面形均很大.在达到热平衡后,即稳态温度场下,支撑方式的影响明显,只有在主镜自由膨胀时,温度对主镜面形的影响比较小,镜面的RMS<0.02 nm/℃.因此如果主镜采用柔性支撑或浮动支撑方式,大口径SiC主镜可以应用在地基望远镜中.  相似文献   

12.
空间太阳望远镜主镜支撑结构的优化设计   总被引:3,自引:0,他引:3  
空间太阳望远镜主镜是有效口径为1m的抛物面镜,工作状态需要达到衍射极限,因此光学系统要求主镜面形误差小于λ/40(RMS),精度主要靠主镜支撑结构来保证。主镜支撑结构应满足地面调试、在轨及发射状态的需要。支撑结构试验样机已经加工完成,地面调试结果表明主镜的镜面变形满足整个光学系统的要求。试验样机强度和刚度还有较大余量,结构本身比较复杂。用有限元分析方法进行优化设计,优化后的主镜支撑结构满足地面调试、在轨及发射状态的需要,也能保证主镜的面形满足整个光学系统的要求,有效减轻仪器重量、简化支撑结构的同时,提高了整个仪器的可靠性。  相似文献   

13.
安装于紫金山天文台盱眙观测站用以观测近地天体的大型Schmidt望远镜,采用了平场Schmidt光学系统,改正镜通光口径为1m,球面反射镜口径为1.2m,焦距为1.8m,接收器用了4K×4K的高灵敏度CCD。本文叙述了该仪器光轴调整的方法及调整后观测获得的初步结果。叙述了望远镜光轴校正方法、校正结果、CCD靶面的调整及望远镜极轴高度、方位的调整及相应的照片。经实际观测的结果是:露光1s可拍到18等星;露光4s可拍到19.3等星;露光20s可拍摄到21.2等星。  相似文献   

14.
李德培 《光学技术》2001,27(6):551-553
2 16m光学望远镜是目前我国研制的口径最大的反射式天文望远镜 ,主镜通光口径为 2 16m ,边厚为330mm ,重量约 2 2 0 0kg ,顶点曲率半径R0 =12 960mm ,偏心率平方e2 =1 0 95 134 7[1] ,相对口径为 1/3,最大非球面度δ0max≈ 2 1μm。由于所用玻璃毛坯为原苏联制造 ,质量极差 ,通体充满气泡、结石、折叠 ,是块等外品。更致命的是磨出的表面各处硬度不均匀 ,出现大面积、形状不规则的高、低区 ,不得不用手持小抛光盘进行手修 ,像雕刻一样去掉那些不规则形状的硬的局部高 ,保留不规则的软的局部低 (所谓修光程 ) ,并把它拼凑成一个较为接近的理想双曲面。可以想像得出 ,这样做会遇到多麽大的困难。在大家的努力下 ,终于用手把它磨修到尽可能完善。最后望远镜在由该主镜、凸双曲面副镜及熔石英像场改正镜组成的R C卡塞格林 (Ritchey ChretienCassegrain)光学系统的焦面上拍摄了星团底片。经鉴定委员会测试组专家测量后认为 ,在全视场 ( 30 0mm× 30 0mm )内 ,不管是边、角还是中心像均很圆 ,暗星像直径达0 18mm。说明主镜的加工工艺是成功的 ,同时也说明凸双曲面副镜的加工、检验[2 ] ,熔石英像场改正镜的设计[1] 、选料、加工[3] 及光学系统的调整[4] 也是成功的。  相似文献   

15.
In this paper we will summarize the progress in the development of the Chinese Space Solar Telescope (SST) during the past few years. The main scientific objective of SST is to observe the fundamental structure of solar magnetic field with its 1-m optical telescope. The success of 1-m Swedish Solar Telescope and Hinode underscores the importance of this 1-m space telescope. In addition, some key technical problems have been solved.  相似文献   

16.
光电系统中铍反射镜的发展与应用   总被引:1,自引:0,他引:1       下载免费PDF全文
石磊  许永森  刘福贺 《中国光学》2014,7(5):749-758
综述了光电系统中铍反射镜常用材料的特性、加工方法、发展现状及最新应用。首先,介绍了目前国外铍反射镜常用材料的性能,铍反射镜基底制备、机械加工和光学加工等方面的发展现状。然后,以詹姆斯韦伯太空望远镜和F-9120航空远距离可见/红外双波段侦察相机为例,重点介绍了铍以及铍铝合金在空间和航空光电系统的反射镜及光机支撑结构上的最新应用。最后,对铍和铍铝合金在光电系统中的未来发展和应用前景提出了展望。  相似文献   

17.
空间望远镜主镜的热光学特性分析   总被引:5,自引:0,他引:5  
杨怿  张伟  陈时锦 《光学技术》2006,32(1):144-147
主镜是空间望远镜光学系统的重要组成元件,其热光学特性将为光学系统的热控设计提供依据。利用建立在集成分析基础上的热光学分析方法,分析了某空间望远镜主镜在三种不同的温度分布形式,即在径向温度、轴向温度、周向温度梯度的作用下对光学系统成像质量的影响,结合设计的要求,根据计算结果给出了许用温度梯度的范围。  相似文献   

18.
王志臣  赵勇志  周超 《光子学报》2014,41(7):762-765
地平式望远镜在进行天体目标跟踪观测时会产生像旋,即视场中的星体会围绕视轴中心旋转,给实时目标识别和基于多帧积累的图像处理算法带来了诸多不便.本文针对地平式望远镜的Coude光路,设计了一种通光口径较大,由三面平面反射镜组成的K镜消旋机构来消除像旋.消旋K镜由三面反射镜组成,通光口径为42 mm,第一面反射镜与第三面反射镜的夹角选择为120°,使K镜通光口径较大,能在全光谱波段范围内使用.入射光线绕光轴转动一定的角度,K镜相应的转动入射光线转角的一半,则出射光线不产生旋转.第一面反射镜和第三面反射镜由两面平面镜固定在金属三角架上组成,替代由三棱体磨制的反射镜面,利用自准直平行光管和高准确度转台装配各反射镜,使K镜光轴和回转轴同轴,并采用直流力矩电机直接驱动,使系统具有较快的响应速度.测角元件采用Renishaw圆光栅,细分后的角分辨率为0.072″.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号