首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
High sulfur content copolymers were prepared via the inverse vulcanization of elemental sulfur with styrene. This reaction was carried out at a relatively low temperature and invokes a new chain transfer mechanism of abstraction of benzylic protons to form stable copolymers. The use of styrene as a comonomer for inverse vulcanization was attractive due to the low cost and wide spread industrial use of styrenics in free radical processes. The copolymers were used as the active cathode material in Li‐S batteries that exhibited outstanding device performance, maintaining 489 mAh/g capacity after 1000 cycles. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 107–116  相似文献   

2.
Alginate and chitosan are among the most common biopolyelectrolytes. Surfactants can be included in alginate and chitosan formulations in order to improve their physical and functional properties. In the present study, the effect of the anionic surfactant sodium dodecyl sulfate (SDS) on alginate‐chitosan polyelectrolyte multilayer (PEM) films is reported for the first time. Layer‐by‐layer deposition technique was employed to prepare the PEM samples and the samples were characterized by ellipsometry, X‐ray reflectivity, atomic force microscopy, and quartz crystal microbalance with dissipation. Incorporation of SDS into PEM formulations increased the film thickness and an increased adsorption behavior between alginate and chitosan layers are observed. Since the concentration of SDS was below its critical micelle concentration, no micelle formation was expected and hydrophobic‐hydrophobic interaction between alginate and SDS might be the main reason. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 1798–1803  相似文献   

3.
Perylenebisimide and naphthalenebisimide (PBI‐PDP and NBI‐PDP) end functionalized with pentadecyl phenol is designed as ditopic hydrogen bonding acceptors to form supramolecular crosslinked network with poly(4‐vinyl pyridine) (P4VP). The pristine PBI‐PDP has been grown as single crystals from DCM‐MeOH (dichloromethane‐methanol) mixture at room temperature, which revealed a P21 space group. Noticeably, the pentadecyl alkyl chain shields the aromatic perylene core on both sides resulting in the absence of π–π interaction in single‐crystal assembly. The naphthalenebisimide derivative exhibits thermotropic liquid crystalline behavior, while both the molecules exhibits lyotropic liquid crystalline phases in tetrahydrofuran (THF), which were characterized using a combination of differential scanning calorimeter, X‐ray diffraction, and polarized light microscopy. The hydrogen‐bonded complex of both the rylenebisimides with P4VP preserves the mesomorphic properties in THF. The electron transport mobility measured by space charge limited current measurements reveals a two orders of magnitude increase in the charge transport in the P4VP complex compared to that of the pristine molecule. The average electron mobility obtained is μ e,avg: 10?3 cm2/Vs for P4VP‐PBI compared to μ e,avg: 10?5 cm2/Vs for pristine PBI derivative. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55 , 951–959  相似文献   

4.
The calorimetric, dielectric, and mechanical responses of highly piezoelectric 70/30 P(VDF‐TrFE) displaying homogenous d33 of ?19 pC N?1 are studied. This work aims at better understanding the influence of poling on the mechanical properties of this copolymer. To explain the one decade mechanical modulus drop observed across the Curie transition, a stiffening process of the amorphous phase due to the local electric fields in the ferroelectric crystals is proposed. In poled P(VDF‐TrFE), these fields are preferentially aligned resulting in a more stable and higher modulus below the Curie transition. This hypothesis accounts for the lower dielectric signals obtained with the poled sample. Through the Curie transition, the vanishing of these local electric fields, stemming from progressive disorientation and conversion of ferroelectric crystals to paraelectric ones, releases the constraints on the amorphous phase, leading to a storage modulus drop typical of a viscoelastic transition. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55 , 1414–1422  相似文献   

5.
We report a one‐pot synthesis of hyperbranched polyglycerols possessing amino functionality by using a novel Boc‐protected aminoethanol glycidyl ether monomer (BAG). A series of hyperbranched Boc‐protected polyamino glycerols (PBAG) were prepared through a one‐pot anionic ring opening multibranching polymerization to yield PBAG with controlled molecular weights (3500–17400 g/mol). Subsequent deprotection of PBAG yielded hyperbranched polyamino glycerols (PAG) with a globular polymeric structure that comprises a randomly branched structure with a large number of functional amine and hydroxyl groups. 1H, 13C, and 15N‐NMR, GPC, and MALDI‐TOF measurements confirmed the successful polymerization of the hyperbranched PAG polymers. With its superior biocompatibility of PAG, we anticipate the prospective potentials for the applications in biological and biomedical fields. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 4013–4019  相似文献   

6.
Described herein is a comprehensive survey on the most recent advancements in polycarbodiimide synthetic methodologies, structure determination, property design, and self-assembly. In particular, the 15N-isotopic enrichment of polycarbodiimides is detailed along with the use of 15N NMR to identify the regioregularity and mechanism of chiroptical switching in polycarbodiimides. Furthermore, the new Ni(II) mediated “living” polymerization is explained along with its utilization in the incorporation of polycarbodiimides into block copolymers, graft copolymers, and star polymers. Finally, we review the recent discoveries focusing on the highly tunable self-assembly behaviors of polycarbodiimide homopolymers and copolymers. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 2915–2934  相似文献   

7.
The electric transport properties of Nafion membranes are investigated by impedance spectroscopy (IS) and correlated with small angle X‐ray scattering (SAXS). Detailed IS measurements in a wide range of temperature and frequencies (f) allowed separating contributions from different charge carriers in Nafion. At controlled relative humidity and temperature, Nafion IS spectrum exhibits at T > 160 °C two distinct frequency‐independent conductivities occurring at high f ~ 106 Hz and low f < 10?2 Hz. Such IS measurements were combined with time‐dependent SAXS measurements under applied dc electric potential, which provided compelling evidence that the low‐f dc conductivity is related to the motion of protons via ion‐hopping in hydrated Nafion membranes. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 822–828  相似文献   

8.
Two donor–acceptor conjugated polymers with azaisoindigo as acceptor units and bithiophene and terthiophene as donor units have been synthesized by Stille polymerization. These two polymers have been successfully applied in field‐effect transistors and polymer solar cells. By changing the donor component of the conjugated polymer backbone from bithiophene to terthiophene, the density of thiophene in the backbone is increased, manifesting as a decrease in both ionization potential and in electron affinity. Therefore, the charge transport in field‐effect transistors switches from ambipolar to predominantly hole transport behavior. PAIIDTT exhibits hole mobility up to 0.40 cm2/Vs and electron mobility of 0.02 cm2/Vs, whereas PAIIDTTT exhibits hole mobility of 0.62 cm2/Vs. Polymer solar cells were fabricated based on these two polymers as donors with PC61BM and PC71BM as acceptor where PAIIDTT shows a modest efficiency of 2.57% with a very low energy loss of 0.55 eV, while PAIIDTTT shows a higher efficiency of 6.16% with a higher energy loss of 0.74 eV. Our results suggest that azaisoindgo is a useful building block for the development of efficient polymer solar cells with further improvement possibility by tuning the alternative units on the polymer backbone. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 2691–2699  相似文献   

9.
Organic semiconductors (OSCs) are strong contenders for use in printed, flexible electronics. Although organic electronic materials have been studied for many years, the physics of charge transport is still under investigation. This is in part due to variability resulting from the large variety of molecules that can be synthesized and inconsistency in electrical characterization due to device and processing conditions. Molecular ordering in OSCs is known to alter the charge transport characteristics and attention to long range and short range ordering provides clues as to the nature of transport pathways. Here, we study ordered regioregular poly(3‐hexylthiophene‐2,5‐diyl) films carefully prepared to obtain a set of three samples with incrementally increasing order on identical transistor architectures. Ordering was characterized using a variety of short and long range techniques to probe the coherence and number of crystallites formed during processing, and the correlation between these different measures of order are quantified. We observe three changes in transistor behavior that show a shift from non‐ideal to more textbook‐like characteristics with increasing order: reduction of the contact resistance, shift to field‐independent mobility, and a shift from a diode‐like (S‐shaped) to linear response at low lateral fields. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 1063–1074  相似文献   

10.
Knowledge of the ceiling temperature and thermodynamic variables for low ceiling temperature polymers is critical to understanding the material's synthesis and use. Synthesis of the polymer below its ceiling temperature is the routine polymerization route. In situ 1H NMR of the equilibrium polymerization reaction can provide critical information for determining the enthalpy and entropy of polymer formation. Three polyaldehydes were synthesized with in situ 1H NMR, and their energies of formation were determined for the linear region of ceiling temperature. Insights into the mechanism of polymerization were also found using this method. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 221–228  相似文献   

11.
The selective transport of ions has crucial importance in biological systems as well as modern‐day energy devices, such as batteries and fuel cells, and water purification membranes. Control over ion movement can be exerted by ligation, ion channel dimensions, solvation, and electrostatic interactions. Polyelectrolyte hydrogels can provide aligned pathways for counter ion transport but lack mechanical integrity, while polyelectrolyte membranes typically suffer from the absence of an ion transport channel network. To develop polymer membranes for improved ion transport, we present the design of a novel material that combines the advantages of aligned pathways found in polyelectrolyte hydrogel and mechanical robustness in conventional membranes. The ionic species were organized via controlled copolymerization of a quaternizable monomer. Additionally, dimensional stability was then incorporated through a cast/crosslinking method to lock in the network of connected cationic groups. This strategy resulted in dramatically enhanced ion transport, as characterized by ionic conductivities (>80 mS/cm for Cl, and ∼200 mS/cm for OH). © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 618–625  相似文献   

12.
A novel cellulose‐click‐chitosan polymer was prepared successfully in three steps: (1) propargyl cellulose with degrees of substitution (DS) from 0.25 to 1.24 was synthesized by etherification of bamboo Phyllostachys bambusoide cellulose with propargyl chloride in DMA/LiCl in the presence of NaH. The regioselectivity of propargylation on anhydrous glucose unit determined by GC‐MS was in the order of 2 >> 6 > 3; (2) the functional azide groups were introduced onto the chitosan chains by reacting chitosan with 4‐azidobenzoic acid in [Amim]Cl/DMF and the DS ranged from 0.02 to 0.46; (3) thus, the cellulose‐click‐chitosan polymer was obtained via click reaction, that is, the Cu(I)‐catalyzed Huisgen 1,3‐dipolar cycloaddition reaction, between the terminal alkyne groups of cellulose and the azide groups on the chitosan backbone at room temperature. The successful binding of cellulose and chitosan was confirmed and characterized by FTIR and CP/MAS 13C NMR spectroscopy. TGA analyses indicated that the cellulose‐click‐chitosan polymer had a higher thermal stability than that of cellulose and chitosan as well as cellulose–chitosan complex. More interestingly, some hollow tubes with near millimeter length were also observed by SEM. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

13.
Coil-helix and sheet-helix block copolymers are synthesized by combining the ring-opening metathesis polymerization (ROMP) of norbornene or paracyclophanediene with the anionic polymerization of phenyl isocyanide. Key to the design is the use of an μ-ethynyl palladium (II) functionalized chain-transfer agent (CTA) that can be exploited in a stepwise manner for the termination of ROMP and the initiation of the anionic polymerization. Both the coil- and sheet-macroinitiators, and the ensuing covalent block copolymers, are analyzed using 1H NMR spectroscopy and gel-permeation chromatography. In all cases, the Pd-end group is maintained and all polymers demonstrate a monomodal distribution with dispersities (Đ) of 1.1–1.4. The resulting helix-coil and helix-sheet block copolymers formed by the macroinitiation route still demonstrate their intrinsic properties (fluorescence, preferential helix-sense). © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 2991–2998  相似文献   

14.
This study demonstrates the synthesis of mesoporous carbon materials utilizing the self‐assembly of a block copolymer and its electrocatalytic activity for oxygen reduction. Fine and mesoporous carbon containing ferrum (Fe) and nitrogen (N) species has been successfully synthesized by multi‐step pyrolysis of a self‐assembled imide film fabricated via a soft template approach. The obtained sample has well‐ordered mesostructure accompanied by uniform pores with diameter of 4.8 nm and BET surface area of 1660 m2 g?1. This material is tough enough to retain its mesostructured even after mechanical ball milling, which will be essential in the application as a fuel cell catalyst. Promising catalytic activity for electrochemical oxygen reduction owing to enhanced mass transport has been demonstrated. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55 , 464–470  相似文献   

15.
Poly{2,6‐bis(thiophene‐2‐yl)‐4,8‐bis(5‐dodecylthiophen‐2‐yl)benzo[1,2‐b :4,5‐b' ]dithiophene} [poly(Th‐bDTBDT‐Th)] was successfully synthesized through Stille coupling polymerization. The addition of the thiophene spacer groups between the benzodithiophene units resulted in improved performance in optoelectronic devices. This was attributed to the reduced lamellae stacking distance in thin film with prominent π–π stacking peak indicating close assembly of poly(Th‐bDTBDT‐Th). Spacing between the benzodithiophene units in poly(Th‐bDTBDT‐Th) helped the close packing of dodecyl chains and generated improved π stacking interaction. For poly(Th‐bDTBDT‐Th), the measured average field effect mobility was 2.32 × 10?3 cm2 V?1 s?1 and average hole mobility in vertical direction was 2.92 × 10?5 cm2 V?1 s?1. Charge transport in both directions was improved by one order of magnitude with the presence of the thiophene spacer. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55 , 3942–3948  相似文献   

16.
Two porous porphyrin‐based covalent triazine frameworks (PCTFs), in which porphyrin is incorporated as building block, have been synthesized by the Friedel–Crafts reaction. The copolymer PCTFs show large Brunauer–Emmett–Teller specific surface area of up to 1089 m2 g?1, high CO2 uptake capacity reaching 139.9 mg g?1 at 273 K/1.0 bar, and good selectivity for CO2/CH4 adsorption attaining 6.1 at 273 K/1.0 bar. The resulting porous solids also can be used as matrices for drug delivery of ibuprofen in vitro. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55 , 2594–2600  相似文献   

17.
Whispering gallery mode microresonators have been triggering considerable advances in science due to their ability to confine light within small dielectric volumes, which makes them suitable for a wide range of applications. Lithographic approaches have been the dominant technique for fabricating microresonators; however, they restrict the choice of materials due to their multistep processing nature. As an alternative, they report the direct laser fabrication of acrylic based hollow microcylinder resonators, via two‐photon polymerization, with good structural integrity and sidewall roughness of 1.5 nm, which make them promising candidates for photonic applications in the near‐infrared. Such polymeric microresonators exhibit finesse close to 103 and a quality factor of 1 105, a performance achieved without any additional processing step, which would restrict the choices of materials to be incorporated into the polymeric resonator. This advantage thereby broadens the widespread use of the polymeric microresonators, making them an excellent platform for lasing and nonlinear optics studies in the near‐infrared. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 569–574  相似文献   

18.
Base‐stable amphiphilic diblock copolymers with a polydiallyl dimethyl ammonium hydroxide block were synthesized and characterized to quantify hydroxide‐ion transport in the hydrated state; polystyrene was the hydrophobic block. The challenge of synthesizing a copolymer comprising blocks with very different solubility behaviors was addressed by a combination of reversible addition fragmentation chain transfer polymerization and ion metathesis. Both monomers used in the polymerization are commercially available on industrial scales. Hydroxide‐ion conductivities of 0.8 mS/cm were achieved in hot‐pressed membranes immersed in water at room temperature despite relatively low water uptake (4.2 water molecules per hydroxide ion). The stability of the polydimethyl ammonium hydroxide chains was investigated in 2 M NaOD at 60 °C. 1H NMR spectroscopy studies showed no detectable degradation after 2000 hours. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 2243–2248  相似文献   

19.
The noninvasive, quantitative ability of nuclear magnetic resonance (NMR) spectroscopy to characterize small molecule metabolites has long been recognized as a major strength of its application in biology. Numerous techniques exist for characterizing metabolism in living, excised, or extracted tissue, with a particular focus on 1H-based methods due to the high sensitivity and natural abundance of protons. With the increasing use of high magnetic fields, the utility of in vivo 1H magnetic resonance spectroscopy (MRS) has markedly improved for measuring specific metabolite concentrations in biological tissues. Higher fields, coupled with recent developments in hyperpolarization, also enable techniques for complimenting 1H measurements with spectroscopy of other nuclei, such as 31P and 13C, and for combining measurements of metabolite pools with metabolic flux measurements. We compare ex vivo and in vivo methods for studying metabolism in the brain using NMR and highlight insights gained through using higher magnetic fields, the advent of dissolution dynamic nuclear polarization, and combining in vivo MRS and ex vivo NMR approaches.  相似文献   

20.
Ring-opening reactions of 1,3-dioxepan-2-one ( 1 ) and 1,3-dioxan- 2 -one (2) with several alcohols were examined. The reactions proceeded without trifluoroacetic acid (TFA) in low conversions, while they proceeded smoothly with TFA to afford the ring-opened adducts and oligomers. Ring-opening polymerizations of 1 and 2 were also carried out by alcohol–acid catalysts to afford the corresponding polycarbonates (M n = 2500−6800). The molecular weights increased with increase of the conversions of 1 and 2. The observed polymerization rates of 1 and 2 were determined as 24.4 × 10−6 and 0.8 × 10−6 s−1, respectively. Mechanistic aspects were studied by NMR spectroscopy. The methylene protons α and β to the carbonate moieties shifted to lower fields in 0.06–0.11 ppm in the 1H-NMR spectra by the addition of TFA. Downfield shifts of the carbonyl carbon signals of 1 and 2 were observed in 3.94–4.15 ppm in the 13C-NMR spectra. These results strongly suggest that the cyclic carbonates are activated by TFA. © 1998 John Wiley & Sons, Inc. J. Polym. Sci. A Polym. Chem. 36: 2463–2471, 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号