首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thienoisoindigo (TIG) moiety has been paid numerous attentions as an excellent acceptor building block in low‐band‐gap polymers. Herein, a new TIG‐dithiophene alternating copolymer (PTIG2T) was successfully synthesized from an asymmetric TIG‐based donor–acceptor (D‐A) monomer via the self‐condensation‐type direct arylation polymerization. PTIG2T exhibited the light absorption over 1000 nm owing to the intramolecular charge transfer in the thin film state, which corresponded to an optical band gap of 1.24 eV. The HOMO and LUMO levels of PTIG2T were determined to be −5.08 and −3.60 eV, respectively. Furthermore, the organic photovoltaic (OPV) with a PTIG2T/PC61BM active layer achieved a power conversion efficiency (PCE) of 3.19%, which is one of the highest PEC achieved by OPVs with TIG‐based materials. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 430–436  相似文献   

2.
Block copolymers with donor and acceptor conjugated polymer blocks provide an approach to dictating the donor–accepter interfacial structure and understanding its relationship to charge separation and photovoltaic performance. We report the preparation of a series of donor‐linker‐acceptor block copolymers with poly(3‐hexylthiophene) (P3HT) donor blocks, poly((9,9‐dioctylfluorene)‐2,7‐diyl‐alt‐[4,7‐bis(thiophen‐5‐yl)‐2,1,3‐benzothiadiazole]‐2′,2″‐diyl) (PFTBT) acceptor blocks, and varying lengths of oligo‐ethylene glycol (OEG) chains as the linkers. Morphological analysis shows that the linkers increase polymer crystallinity while a combination of optical and photovoltaic measurements shows that the insertion of a flexible spacer reduces fluorescence quenching and photovoltaic efficiencies of solution processed photovoltaic devices. Density functional theory (DFT) simulations indicate that the linking groups reduce both charge separation and recombination rates, and block copolymers with flexible linkers will likely rotate to assume a nonplanar orientation, resulting in a significant loss of overlap at the donor–linker–acceptor interface. This work provides a systematic study of the role of linker length on the photovoltaic performance of donor–linker–acceptor block copolymers and indicates that linkers should be designed to control both the electronic properties and relative orientations of conjugated polymers at the interface. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 1135–1143  相似文献   

3.
A new donor–acceptor (D‐A) conjugated copolymer (PBDTT(ff)‐ttTPD) based on fluorine‐substituted benzodithiophene (BDT) and 6‐alkylthienothienyl thieno[3,4‐c]pyrrole‐4,6‐dione (ttTPD) has been synthesized via a Stille cross‐coupling reaction. As a control, the nonfluorinated BDT‐based ttTPD copolymer (PBDTT‐ttTPD) was also synthesized by using the same polymerization method. The number‐average molecular weights (M n) of PBDTT(ff)‐ttTPD and PBDTT‐ttTPD were found to be 48,000 g/mol (? = 2.2) and 43,000 g/mol (? = 2.1), respectively. The HOMO levels of PBDTT(ff)‐ttTPD and PBDTT‐ttTPD were calculated to be ?5.65 and ?5.45 eV, respectively. The inclusion of fluorinated BDT units is a very effective approach to lowering the polymer's HOMO level. The SCLC mobilities of PBDTT(ff)‐ttTPD and PBDTT‐ttTPD were determined to be 5.9 × 10?4 and 3.0 × 10?4 cm2/Vs, respectively. Polymer solar cell devices prepared with PBDTT(ff)‐ttTPD and PBDTT‐ttTPD as their active layers were found to exhibit power conversion efficiencies of 7.45 and 6.79% with open circuit voltages of 0.98 and 0.84 V, respectively. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55 , 2506–2512  相似文献   

4.
Self‐assembly and mechanical properties of triblock copolymers in a mid‐block selective solvent are of interest in many applications. Herein, we report physical assembly of an ABA triblock copolymer, [PMMA–Pn BA–PMMA] in two different mid‐block selective solvents, n‐butanol and 2‐ethyl‐1‐hexanol. Gel formation resulting from end‐block associations and the corresponding changes in mechanical properties have been investigated over a temperature range of ?80 °C to 60 °C, from near the solvent melting points to above the gelation temperature. Shear‐rheometry, thermal analysis, and small‐angle neutron scattering data reveal formation and transition of structure in these systems from a liquid state to a gel state to a percolated cluster network with decrease in temperature. The aggregated PMMA end‐blocks display a glass transition temperature. Our results provide new understanding into the structural changes of a self‐assembled triblock copolymer gel over a large length scale and wide temperature range. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55 , 877–887  相似文献   

5.
In this work, we report the synthesis, characterization, and application of two regioirregular naphthalenediimide (NDI)‐based alternating conjugated polymers, namely P1 and P2 , in which nitrile‐substituted moiety, 2,3‐bis(thiophen‐2‐yl)acrylonitrile and NDI moiety act as donor and acceptor unit, respectively. The two regioirregular polymers possess low‐lying LUMO energy levels of ?3.92 eV for P1 and ?3.96 eV for P2 . Both polymers possess typical dual‐band UV?Vis?NIR absorption profiles of NDI‐based polymers, and show broadened and red‐shifted absorption spectra in the solid state compared with those in solutions. Field‐effect transistor devices with top‐gate bottom‐contact configuration were used to evaluate the polymers' semiconducting properties. The two polymers exhibited promising and air‐stable ambipolar charge transport characteristics. Thin film microstructure investigations (AFM and 2D‐GIXRD) suggest both polymers formed continuous and smooth thin films, and adopted predominantly face‐on molecular packing in the solid state. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55 , 3627–3635  相似文献   

6.
The self‐assembling ability of block copolymers offers an attractive strategy for the organization of π‐conjugated polymers. This article reports the synthesis of a coil–rod–coil triblock copolymer consisting of oligo(p‐phenyleneethynylene) as the rodlike segment and polystyrene as the coil‐like segment. The chemical structure of the afforded triblock copolymer has been fully characterized by various spectroscopic techniques such as NMR, Raman, gel permeation chromatography, differential scanning calorimetry, ultraviolet–visible, and fluorescence spectroscopy. The small‐angle neutron scattering and photophysical measurements indicate that this triblock copolymer exhibits unique solvatochromatic behaviors through the interplay of aggregation‐induced π–π stacking and planarization of the conjugated backbone. Supramolecular gel nanostructures have been produced via the controlled assembly of the polymer into H‐aggregates. It has been demonstrated that the use of the solvent composition to influence chain conformations and thus to manipulate the packing of the conjugated polymer blocks is important for achieving control in the assembly of conducting polymers and associated optical characteristics. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 6007–6019, 2005  相似文献   

7.
We present a study of the optical, structural and device properties of a polyfluorene (PFM)‐based (PFM‐F8BT‐PFM) donor–acceptor triblock copolymer for use in an organic solar cell. Neutron reflectivity is employed to probe the vertical composition profile before and after thermal annealing while the crystallinity was examined using grazing incidence wide‐angle X‐ray. The absorption spectra and photoluminescence emission for the triblock and analogous blend of PFM with F8BT reveal a greater degree of intermixing in the triblock. However, the triblock copolymer exhibits exciplex emission, which necessitates a geminate polar pair; long‐lived exciplex states are detrimental in organic photovoltaic devices. The triplet yield in the triblock and the blend is estimated using photoinduced absorption, with the triblock copolymer generating a triplet population 20 times that of the blend. This is far from ideal as triplets are wasted states in organic photovoltaic devices and they can also act as scavengers of polarons reducing the efficiency even more. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2013 , 51, 1705–1718  相似文献   

8.
Thin films composed of polycyclohexane (PCHE), zinc(II)‐5,10,15,20‐tetra‐(2‐naphthyl)porphyrin (ZnTNpP), and [6,6]‐phenyl‐C61‐butyric acid methyl ester (PCBM) blends are prepared to investigate their potential for the controlled self‐assembly of a porphyrin/fullerene donor–acceptor complex in a polymer thin film. The compatibilities of PCHE/PCBM (p), PCHE/ZnTNpP (q), and ZnTNpP/PCBM (r) in these blends have a significant effect on the dispersion of the ZnTNpP/PCBM donor–acceptor complex in the PCHE thin film. When the compatibilities are p << q, r, and q ≈ r, the ZnTNpP/PCBM donor–acceptor complex is formed between the PCHE and PCBM phases. This concept to form a controlled self‐assembly of the ZnTNpP/PCBM donor–acceptor complex may be applied to various combinations of porphyrin/fullerene systems in polymer thin film solar cells to achieve excellent performance. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 743–746  相似文献   

9.
Two donor–acceptor conjugated polymers with azaisoindigo as acceptor units and bithiophene and terthiophene as donor units have been synthesized by Stille polymerization. These two polymers have been successfully applied in field‐effect transistors and polymer solar cells. By changing the donor component of the conjugated polymer backbone from bithiophene to terthiophene, the density of thiophene in the backbone is increased, manifesting as a decrease in both ionization potential and in electron affinity. Therefore, the charge transport in field‐effect transistors switches from ambipolar to predominantly hole transport behavior. PAIIDTT exhibits hole mobility up to 0.40 cm2/Vs and electron mobility of 0.02 cm2/Vs, whereas PAIIDTTT exhibits hole mobility of 0.62 cm2/Vs. Polymer solar cells were fabricated based on these two polymers as donors with PC61BM and PC71BM as acceptor where PAIIDTT shows a modest efficiency of 2.57% with a very low energy loss of 0.55 eV, while PAIIDTTT shows a higher efficiency of 6.16% with a higher energy loss of 0.74 eV. Our results suggest that azaisoindgo is a useful building block for the development of efficient polymer solar cells with further improvement possibility by tuning the alternative units on the polymer backbone. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 2691–2699  相似文献   

10.
A high‐temperature solution blending process has been used to synthesize a series of copolymers incorporating varying mole ratios of perylenebisimide (PBI) into the backbone of an engineering thermoplastic polyester [poly(1,4‐cyclohexylenedimethylene‐1,4‐cyclohexanedicarboxylate)] (PCCD). A random donor–acceptor copolymer incorporating oligo(p‐phenylene vinylene) (OPV) and PBI was also synthesized. The chemical incorporation of these chromophores into PCCD was confirmed by carrying out the melt condensation using 1,4‐cyclohexanedimethanol and 1,4‐dimethylcyclohexane dicarboxylate with hydroxyl‐functionalized PBI and OPV derivatives. Higher extent of incorporation of PBI (35 mol %) could be achieved using the blending approach retaining solubility, film‐forming ability, and higher molecular weights. The PBI polymers produced using the two different approaches exhibited structural variations. The polymers formed from the solution blending approach had a semicrystalline nature with blocks of PCCD separating the PBI units, whereas those produced using the melt condensation route were amorphous polymers. This structural variation was reflected in their photophysical properties also with the reactive solution‐blended polymers exhibiting higher fluorescence quantum yields. These results demonstrate the easy incorporation of suitably functionalized donor and acceptor moieties into a completely aliphatic polyester backbone to produce free‐standing films of hitherto nonprocessable polymers. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

11.
New diketopyrrolopyrrole (DPP)‐containing amorphous conjugated polymers, such as poly(3‐(5‐((9,10‐bis((4‐hexylphenyl)ethynyl)‐6‐(prop‐1‐ynyl)anthracen‐2‐yl)ethynyl) thiophen‐2‐yl)‐5‐(2‐hexyldecyl)‐2‐(2‐octyldodecyl)‐6‐(thiophen‐2‐yl)pyrrolo[3,4‐c]pyrrole‐1,4(2H,5H)‐dione) ( 4 ), and poly(3‐(5‐((2,6‐bis((4‐hexylphenyl)ethynyl)‐10‐(prop‐1‐ynyl)anthracen‐9‐yl)ethynyl)thiophen‐2‐yl)‐2,5‐bis(2‐octyldodecyl)‐6‐(thio phen‐2‐yl)pyrrolo[3,4‐c]pyrrole‐1,4(2H,5H)‐dione) ( 7 ), were successfully synthesized via Sonogashira coupling reactions under microwave conditions. Copolymer 7 , incorporating a DPP moiety at the 9,10‐position of the anthracene ring through a triple bond, showed a much lower bandgap energy (Eg = 1.81 eV) than copolymer 4 (Eg = 2.13 eV). Tuning of the molecular frontier orbital energies was achieved by only changing the anchoring position of dithiophenyl‐DPP from the 2,6‐ to the 9,10‐position in the anthracene ring. Because of the donor–acceptor (D–A) interaction and the two‐dimensional planar structure of the X‐shaped donor monomer, the resulting polymers showed good interchain π?π stacking in the thin‐film state, despite being amorphous polymers. When the newly synthesized polymer 7 was used as a semiconductor material in an organic thin‐film transistor, the best mobility of up to 0.12 cm2 V?1 s?1 (Ion/off = ~ 4.4 × 106) was observed, which is one of the highest values recorded for amorphous polymer films reported to date. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

12.
A series of new phenothiazine‐based donor–acceptor copolymers, P1 and P2, were synthesized via a Suzuki coupling reaction. The weight‐averaged molecular weights (Mw) of P1 and P2 were found to be 16,700 and 16,100, with polydispersity indices of 1.74 and 1.39, respectively. The UV–visible absorption spectra of the polymer thin films contained three strong absorption bands in the ranges 318–320 nm, 430–436 nm, and 527–568 nm. The absorption peaks at 320 and 430 nm originated mainly from the phenothiazine‐based monomer units, and the longer wavelength absorption band at 527–568 nm was attributed to the increased effective conjugation length of the polymer backbones. Solution‐processed field‐effect transistors fabricated with these polymers exhibited p‐type organic thin film transistor characteristics. The field‐effect mobilities of P1 and P2 were measured to be 1.0 × 10?4 and 7.5 × 10?5 cm2 V?1 s?1, respectively, with on/off ratios in the order of 104 for all polymers. A photovoltaic device in which a P2/PC71BM (1/3) blend film was used as the active layer exhibited an open‐circuit voltage (VOC) of 0.70 V, a short‐circuit current (JSC) of 6.79 mA cm(2, a fill factor of 0.39, and a power conversion efficiency of 1.86% under AM 1.5 G (100 mW cm?2) illumination. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

13.
Novel naphtho[1,2‐b:5,6‐b′]dithiophene (NDT) and diketopyrrolopyrrole (DPP)‐containing donor‐acceptor conjugated polymers (PNDTDPPs) with different branched side chains were synthesized via Pd(0)‐catalyzed Stille coupling reaction. Octyldodecyl (OD) and dodecylhexadecyl (DH) groups were tethered to the DPP units as the side chains. The soluble fraction of PNDTDPP‐OD polymer in chloroform has much lower molecular weight than that of PNDTDPP‐DH polymer. PNDTDPP‐DH polymer bearing relatively longer DH side chains exhibited much better charge‐transport behavior than PNDTDPP‐OD polymer with shorter OD side chains. The thermally annealed PNDTDPP‐DH polymer thin films exhibited an outstanding charge carrier mobility of ~1.32 cm2 V?1 s?1 (Ion/Ioff ~ 108) measured under ambient conditions, which is almost six times higher than that of thermally annealed PNDTDPP‐OD polymer thin films. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 5280–5290  相似文献   

14.
A new carbazole‐based electron accepting unit, 5‐(2,7‐dibromo‐9H‐carbazol‐9‐yl)benzo[a]phenazine (CBP), was newly designed and synthesized as the acceptor part of donor‐acceptor type low band‐gap polymers for polymer solar cells. The CBP was copolymerized with electron donating monomers such as benzo[1,2‐b:4,5‐b′]dithiophene (BDT) or 4,8‐bis(2‐octyl‐2‐thienyl)‐benzo[1,2‐b:4,5‐b′]dithiophene (BDTT) through Stille cross‐coupling polymerization, and produced two alternating copolymers, PBDT‐CBP and PBDTT‐CBP. An alternating copolymer (PBDT‐CBZ) consisted of 2,7‐dibromo‐9‐(heptadecan‐9‐yl)‐9H‐carbazole (CBZ) and BDT units was also synthesized for comparison. PBDT‐CBZ showed the maximum absorption at 430 nm and did not show absorption at wavelengths longer than 513 nm. However, CBP containing polymers (PBDT‐CBP and PBDTT‐CBP) showed a broad absorption between 300 and 850 nm due to the intramolecular charge transfer interaction between the electron donating and accepting blocks in the polymeric backbone. Bulk heterojunction photovoltaic devices were fabricated using the synthesized polymers as electron donors and [6,6]‐phenyl C71‐butyric acid methyl ester (PC71BM) as electron acceptor. One of these devices showed a power conversion efficiency of 2.33%, with an open‐circuit voltage of 0.81 V, a short‐circuit current of 6.97 mA/cm2, and a fill factor (FF) of 0.41 under air mass (AM) 1.5 global (1.5 G) illumination conditions (100 mW/cm2). © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013, 51, 2354–2365  相似文献   

15.
D‐A copolymer systems have unique characteristics, such as low band gap and ambipolar nature, which are important to design electronic polymer devices. In this contribution, we synthesized and characterized a D‐A random copolymer containing bis‐3‐hexylthiophene‐benzothiadiazole as acceptor unit and 9,9‐dioctylfluorene as donor unit. We show that the polymeric film morphology depends of the Hansen solubility parameters, evaporation rate, and surface tension of the solvent. Chloroform, toluene, and 1,2,4‐trichlorobenzene (TCB) promote the formation of self‐assembled structures due to breath‐figure mechanism. In contrast, THF causes aggregation and phase separation that affect negatively the electrical conductivity of the copolymer film. Among the solvents analyzed, TCB is the one with the highest molecular interaction with the copolymer synthetized in this work. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 1035–1044  相似文献   

16.
A novel D–A1–D–A2 copolymer denoted as P1 containing two electron withdrawing units based on benzothiadiazole (BT) and 9‐(2‐octyldodecyl)?8H‐pyrrolo[3,4‐b] bisthieno[2,3‐f:3′,2′‐h]quinoxaline‐8,10(9H)–dione (PTQD) units was synthesized and characterized. The resulting copolymer exhibits a broad‐absorption spectrum, relatively deep lying HOMO energy level (?5.44 eV) and narrow optical bandgap (1.50 eV). Bulk heterojunction (BHJ) polymer solar cells (PSCs) based on P1 as donor and PC71BM as acceptor with optimized donor to acceptor weight ratio of 1:2 and processed with DIO/CB solvent showed good photovoltaic performance with power conversion efficiency of 6.21% which is higher than that of the device processed without solvent additive (4.40%). The absorption and morphology investigations of the active layers indicated that structural and morphological changes were induced by the solvent additive. This higher power conversion efficiency could be mainly attributed to the absorption enhancement and improved charge transported in the active layer induced by the better nanoscale morphology of the active layer. This study demonstrated that a copolymer with two different acceptor moieties in the backbone may be promising candidate as donor copolymer for solution processed BHJ PSCs. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 155–168  相似文献   

17.
We report here electrochemical synthesis of novel soluble donor–acceptor (D–A) polymer with suitably functionalized perylenetetracarboxylic diimide dye derivative covalently linked to carbazole moiety (Cbz‐PDI). The band gap, Eg was measured using UV–Vis spectroscopy and compared with that obtained by cyclic voltammetry (CV). Efficient intramolecular electron transfer from carbazole‐donor to perynediimide‐acceptor leads to remarkable fluorescence quenching of the perylene core. Furthermore, spectroelectrochemical property and surface morphology of the polymer film were investigated. Characteristic monoanion and dianion radical bands on the UV–Vis absorption spectra attributed to the electrochemical reduction of the neutral polymer were observed. During the reduction process, red color of the film turned into blue and violet, respectively. Finally, the photovoltaic performance of the D–A double‐cable polymer was checked and nearly 0.1% electrical conversion efficiency is obtained under simulated AM 1.5 solar light with 100 mW/cm2 radiation power. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 6280–6291, 2009  相似文献   

18.
A new p‐phenylene–vinylene–thiophene‐based siloxane block copolymer has been synthesized. The copolymer consists of alternating rigid and flexible blocks. The rigid blocks are composed of phenylene–vinylene–thiophene‐based units, and the flexible blocks are derived from 1,3‐dialkyldisiloxane units. The former component acts as the chromophore, and allows fine tuning of band gap for blue‐light emission, while the latter imparts good solubility of the copolymer in organic solvents, and thus, should enhance processibility of the resulting copolymer. The thermal properties of the copolymer have been characterized by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The photoluminescence (PL) of the copolymer in solution and in cast film has been studied. The effects of concentration on the PL intensity of the new copolymer in polymer blends with poly(methyl methacrylate) (PMMA) and poly(vinyl carbazole) (PVK) have also been described. Efficient energy transfer from PVK to the new block copolymer in the blended film was observed. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1450–1456, 2000  相似文献   

19.
A novel conjugated block copolymer system containing a donor‐type conjugated block (c‐D) covalently connected to an acceptor type conjugated block (c‐A) via a nonconjugated and flexible bridge chain (nc‐B), also called a DBA type block copolymer, has been designed, synthesized, and characterized for potential cost‐effective and high‐efficiency optoelectronic applications such as solar cells. Specifically, D is a regio‐regular para‐2‐ethylhexyloxy‐substituted polyphenylenevinylene (or EH‐RO‐PPV), A is a regio‐regular polyphenylenevinylene with sulfone (SO2) acceptor moiety and a linear oxydecane (‐OC10H21) group substituted on every phenylene unit, and B contains an aliphatic chain with two or four methylene units. The size of each block can be controlled via synthetic feed ratio of the monomer and the terminator. The measured average molecular weights of D, A, and DBA based on gel permission chromatography are in good agreements with the molecular weights calculated using the monomer:terminator synthetic feed ratios. Preliminary optoelectronic device studies revealed an order of magnitude better improvement in photoelectric power conversion efficiency of DBA over the corresponding D/A blend under identical fabrication and testing conditions. Such improvements could be attributed to more efficient photo induced charge separation and charge transport in DBA versus in D/A blends. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1149–1160  相似文献   

20.
A novel fused ladder alternating D–A copolymer, PIDT–DPP, with alkyl substituted indacenodithiophene (IDT) as donor unit and diketopyrrolopyrrole (DPP) as acceptor unit, was designed and synthesized by Pd‐catalyzed Stille‐coupling method. The copolymer showed good solubility and film‐forming ability combining with good thermal stability. PIDT–DPP exhibited a broad absorption band from 350 to 900 nm with an absorption peak centered at 735 nm. The optical band gap determined from the onset of absorption of the polymer film was 1.37 eV. The highest occupied molecular orbital level of the polymer is as deep as ?5.32 eV. The solution‐processed organic field‐effect transistor (OFETs) was fabricated with bottom gate/top contact geometry. The highest FET hole mobility of PIDT–DPP reached 0.065 cm2 V?1 s?1 with an on/off ratio of 4.6 × 105. This mobility is one of the highest values for narrow band gap conjugated polymers. The power conversion efficiency of the polymer solar cell based on the polymer as donor was 1.76% with a high open circuit voltage of 0.88 V. To the best of our knowledge, this is the first report on the photovoltaic properties of alkyl substituted IDT‐based polymers. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号