首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Infrared-visible sum frequency generation (SFG) vibrational spectroscopy, in combination with fluorescence microscopy, was employed to investigate the surface structure of lysozyme, fibrinogen, and bovine serum albumin (BSA) adsorbed on hydrophilic silica and hydrophobic polystyrene as a function of protein concentration. Fluorescence microscopy shows that the relative amounts of protein adsorbed on hydrophilic and hydrophobic surfaces increase in proportion with the concentration of protein solutions. For a given bulk protein concentration, a larger amount of protein is adsorbed on hydrophobic polystyrene surfaces compared to hydrophilic silica surfaces. While lysozyme molecules adsorbed on silica surfaces yield relatively similar SFG spectra, regardless of the surface concentration, SFG spectra of fibrinogen and BSA adsorbed on silica surfaces exhibit concentration-dependent signal intensities and peak shapes. Quantitative SFG data analysis reveals that methyl groups in lysozyme adsorbed on hydrophilic surfaces show a concentration-independent orientation. However, methyl groups in BSA and fibrinogen become less tilted with respect to the surface normal with increasing protein concentration at the surface. On hydrophobic polystyrene surfaces, all proteins yield similar SFG spectra, which are different from those on hydrophilic surfaces. Although more protein molecules are present on hydrophobic surfaces, lower SFG signal intensity is observed, indicating that methyl groups in adsorbed proteins are more randomly oriented as compared to those on hydrophilic surfaces. SFG data also shows that the orientation and ordering of phenyl rings in the polystyrene surface is affected by protein adsorption, depending on the amount and type of proteins.  相似文献   

2.
The polar orientation and degree of conformational order of sodium dodecyl sulfate (SDS) adsorbed at the hydrophobic octadecanethiol/aqueous solution interface in the presence of poly(ethylene glycol) (PEG) has been investigated as a function of the surfactant concentration and the molecular weight of the polymer. Sum frequency generation (SFG) vibrational spectroscopy was employed to obtain spectra of interfacial surfactant; weak SFG signals from interfacial polymer were also detected for polymer molecular weights of 900 and above. The phase of the SFG spectra indicated that both the surfactant and polymer had a net orientation of their CH2 and/or CH3 groups toward the hydrophobic surface. Spectra of SDS in the presence of mixed polymer/surfactant solutions showed increasing conformational order as the surfactant concentration was raised. At the lowest surfactant concentrations, the spectra of SDS were weaker in the presence of the polymer than in its absence. All PEG molecular weights investigated, with the exception of PEG 400, gave rise to significant inhibition of ordered surfactant adsorption below the critical micelle concentration. The greatest inhibitory effect was noted for PEG 900. Probing interfacial PEG specifically through the use of perdeuterated SDS revealed that the polymer spectral intensity decreased monotonically as the surfactant concentration was increased for all polymer molecular weights where a PEG spectrum was apparent. These findings are interpreted in terms of the displacement of preadsorbed polymer as the surfactant concentration increases. This result is compatible with observations of adsorption from SDS/PEG solutions at solid/solution and solution/air interfaces made using other techniques.  相似文献   

3.
This is the first report describing a new technology where hydrophobic nanoparticles adsorb onto much larger, hydrophilic mineral particle surfaces to facilitate attachment to air bubbles in flotation. The adsorption of 46 nm cationic polystyrene nanoparticles onto 43 μm diameter glass beads, a mineral model, facilitates virtually complete removal of the beads by flotation. As little as 5% coverage of the bead surfaces with nanoparticles promotes high flotation efficiencies. The maximum force required to pull a glass bead from an air bubble interface into the aqueous phase was measured by micromechanics. The pull-off force was 1.9 μN for glass beads coated with nanoparticles, compared to 0.0086 μN for clean beads. The pull-off forces were modeled using Scheludko's classical expression. We propose that the bubble/bead contact area may not be dry (completely dewetted). Instead, for hydrophobic nanoparticles sitting on a hydrophilic surface, it is possible that only the nanoparticles penetrate the air/water interface to form a three-phase contact line. We present a new model for pull-off forces for such a wet contact patch between the bead and the air bubble. Contact angle measurements of both nanoparticle coated glass and smooth films from dissolved nanoparticles were performed to support the modeling.  相似文献   

4.
The adsorption of a 14-amino acid amphiphilic peptide, LK14, which is composed of leucine (L, nonpolar) and lysine (K, charged), on hydrophobic polystyrene (PS) and hydrophilic silica (SiO2) was investigated in situ by quartz crystal microbalance (QCM), atomic force microscopy (AFM), and sum frequency generation (SFG) vibrational spectroscopy. The LK14 peptide, adsorbed from a pH 7.4 phosphate-buffered saline (PBS) solution, displayed very different coverage, surface roughness and friction, topography, and surface-induced orientation when adsorbed onto PS versus SiO2 surfaces. Real-time QCM adsorption data revealed that the peptide adsorbed onto hydrophobic PS through a fast (t < 2 min) process, while a much slower (t > 30 min) multistep adsorption and rearrangement occurred on the hydrophilic SiO2. AFM measurements showed different surface morphologies and friction coefficients for LK14 adsorbed on the two surfaces. Surface-specific SFG spectra indicate very different ordering of the adsorbed peptide on hydrophobic PS as compared to hydrophilic SiO2. At the LK14 solution/PS interface, CH resonances corresponding to the hydrophobic leucine side chains are evident. Conversely, only NH modes are observed at the peptide solution/SiO2 interface, indicating a different average molecular orientation on this hydrophilic surface. The surface-dependent difference in the molecular-scale peptide interaction at the solution/hydrophobic solid versus solution/hydrophilic solid interfaces (measured by SFG) is manifested as significantly different macromolecular-level adsorption properties on the two surfaces (determined via AFM and QCM experiments).  相似文献   

5.
Reduction of hydrophobic interaction in water is important in biological interfaces. In our previous work, we have found that poly(styrene- b-triethylene glycol methyl ether methacrylate) (PS-PME3MA) segregates the PME3MA block to the surface in hydrophobic environment, such as in air or in a vacuum, and shows remarkable resistance against adsorption or adhesion of proteins, platelets, and cells in water. In this paper, we report that atomic force microscopy (AFM) with hydrophobic probes can directly monitor the reduced hydrophobic interaction of the PS surfaces modified by poly(styrene- b-origoethylene glycol methyl ether methacrylate) (PS-PME NMA), where N is the number of ethylene glycol units. The pull-off forces between the hydrophobic probes that are coated with octyltrichlorosilane (OLTS) and the PS-PME NMA modified polystyrene (PS) surfaces in water were measured. The absolute spring constants and tip-curvatures of the AFM cantilevers were measured to compute the work of adhesion by the Johnson, Kendall, and Roberts (JKR) theory, which relates the pull-off force at which the separation occurs between a hemisphere and a plane to the work of adhesion. The hydrophobic interactions between the hydrophobic tip and polymer surfaces in water were greatly reduced with the segregated PME NMA blocks. The hydrophobic interactions decrease with increasing N of the series of PS-PME NMA and show a correlation with the amount of protein adsorbed.  相似文献   

6.
Affinity adsorption technique is increasingly used for protein purification, separation and other biochemical applications. Therapeutic molecules such as antibodies, cytokines, therapeutic DNA and plasma proteins must be purified before characterization and utilization. The aim of this study was to prepare micronsized spherical polymeric beads and to investigate the extent of their human insulin adsorption capability. Monosize poly(ethylene glycol dimethacrylate-N-methacryloyl-(L)-histidine) [poly(EDMA-MAH)] beads were prepared by modified suspension copolymerization. Functional monomer (MAH) was synthesized using methacryloyl chloride and L-histidine. The beads were characterized using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy, swelling test and elemental analysis. MAH incorporation into monosize polymeric beads, having an average size around 2-3 μm, was estimated as 55.3 μmol MAH/g bead. Equilibrium swelling ratios of poly(EDMA-MAH) and poly(EDMA) beads were 65% and 55%, respectively. Adsorption experiments were performed under different conditions (i.e., pH, temperature, protein concentration and ionic strength). It was found that adsorption characteristics are strongly depend on these conditions. Maximum insulin adsorption capacity was achieved as 24.7 mg insulin/g poly(EDMA-MAH) beads. Results were well fitted to the Langmuir isotherm model. Compared with poly(EDMA-MAH), nonspecific insulin adsorption onto poly(EDMA) beads was very low (0.61 mg insulin/g bead) and can be negligible. It was observed that insulin could be repeatedly adsorbed and desorbed (at least 10 times) without significant loss in adsorption capacity.  相似文献   

7.
Anti-low density lipoprotein antibody (anti-LDL) molecules were attached covalently and oriented through Protein A onto poly(2-hydroxyethyl methacrylate-ethylene glycol dimethacrylate) [poly(HEMA-EGDMA)] beads in order to remove cholesterol specifically from hypercholesterolemic human plasma. Poly(HEMA-EGDMA) beads were produced by suspension polymerization. Blood compatibility tests were performed. All the clotting times were increased when compared with control plasma. Loss of platelets and leukocytes was very low. The maximum anti-LDL attachment was 11.6 mg . g(-1) in the case of random immobilization and 28.3 mg . g(-1) in the case of oriented immobilization. In the latter case, Protein A loading was 8.3 mg . g(-1) at pH 7.5 (borate buffer, 0.15 M NaCl). There was low non-specific cholesterol adsorption onto the poly(HEMA-EGDMA) beads, about 0.83 mg . g(-1). Random and oriented anti-LDL attached beads adsorbed 8.2 mg and 11.7 mg cholesterol per g of bead from hypercholesterolemic human plasma, respectively. Up to 96% of the adsorbed cholesterol was desorbed. The binding-elution cycle was repeated 6 times using the same beads. There was no significant loss of binding capacity.  相似文献   

8.
Sum frequency generation (SFG) vibrational spectroscopy was used to study the structure of water at cross-linked PEO film interfaces in the presence of human serum albumin (HSA) protein. Although PEO is charge neutral, the PEO film/water interface exhibited an SFG signal of water similar to that of a highly charged water/silica interface, signifying the presence of ordered water. Ordered water molecules were observed not only at the water/PEO interface, but also within the PEO film. It indicates that the PEO and water form an ordered hydrogen-bonded network extending from the bulk PEO film into liquid water, which can provide an energy barrier for protein adsorption. Upon exposure to the protein solution, the SFG spectra of water at the water/PEO interface remained nearly unperturbed. For comparison, the SFG spectra of water/silica and water/polystyrene interfaces were also studied with and without HSA in the solution. The SFG spectra of the interfacial water were correlated with the amount of protein adsorbed on the surfaces using fluorescence microscopy, which showed that the amount of protein adsorbed on the PEO film was about 10 times less than that on a polystyrene film and 3 times less than that on silica.  相似文献   

9.
Adsorption of methyl chloride and coadsorption of CH3Cl and D2O on Pd(111) surfaces at T=100 K have been studied under ultrahigh-vacuum conditions using femtosecond sum frequency generation (SFG) spectroscopy in the spectral regions of CH and OD bands. On the bare Pd(111) substrate, the CH3Cl coverage dependence of the resonant SFG signal is consistent with a progressive molecular rearrangement starting at half saturation followed by the growth of two ordered monolayers in which the molecular axes are perpendicular to the surface. When CH3Cl is adsorbed on top of predeposited D2O on Pd(111), the SFG signals as a function of the CH3Cl exposure indicate that methyl chloride is adsorbed onto D2O through hydrogen bonding. On the contrary when the adsorption order is reversed the strong decrease of the CH3 signal as a function of the D2O exposure is explained by assuming that water molecules penetrate inside the CH3Cl layers, leading to the formation of disordered CH3Cl clusters. In all cases a nonresonant contribution due to molecular adsorption is observed and it shows a dependence upon surface structure and coverage significantly different from that of the resonant vibrational bands.  相似文献   

10.
 Spherical and swellable gel beads were obtained by the suspension polymerization of poly(ethylene glycol) methacrylate macromonomer (PEG-MA). The average size and size distribution properties, the equilibrium swelling behaviour and the protein adsorption characteristics of PEG-MA-based gel beads were determined. In the suspension polymerization system, the organic phase including monomer, cross-linker and diluent solution was dispersed in an aqueous medium by using poly(vinylpyrrolidone) as the stabilizer. The diluent solution was prepared by mixing cyclohexanol and octanol at different volume ratios. The suspension polymerization experiments were designed in two separate parts. In the first part, ethylene glycol dimethacrylate was selected as the cross-linker and swellable PEG-MA-based gel beads were obtained by changing the cross-linker concentration, the monomer/diluent ratio and the stirring rate. In the second part, a more hydrophobic structure, divinylbenzene (DVB) was tried as a cross-linker. In this part, PEG-MA-DVB copolymer beads were obtained by changing the DVB/PEG-MA feed ratio. Then, the hydrophicility of the resulting gel beads could be controlled by changing the feed ratio of hydrophilic macromonomer to hydrophobic cross-linker. This property was also used to control the extent of nonspecific protein adsorption onto the surface of the gel beads. The non specific albumin adsorption onto the gel beads decreased with increasing PEG-MA content. No significant nonspecific adsorption at the isoelectric point of albumin was detected onto the gel beads produced with the higher PEG-MA/DVB feed ratios. For specific albumin adsorption, a triazinyl dye (i.e., cibacron blue, CB F3G-A) was covalently attached onto the surface of the copolymer beads via terminal hydroxyl groups of PEG-MA. The results of albumin adsorption experiments with the CB F3G-A carrying beads indicated that an appreciable specific albumin adsorption capacity could be obtained with the gel beads produced with a PEG-MA/DVB feed ratio of 1.5/4.0. Received: 16 August 1999/Revised: 27 December 1999  相似文献   

11.
The adsorption of trypsin onto polystyrene and silica surfaces was investigated by reflectometry, spectroscopic methods, and atomic force microscopy (AFM). The affinity of trypsin for the hydrophobic polystyrene surface was higher than that for the hydrophilic silica surface, but steady-state adsorbed amounts were about the same at both surfaces. The conformational characteristics of trypsin immobilized on silica and polystyrene nanospheres were analyzed in situ by circular dichroism and fluorescence spectroscopy. Upon adsorption the trypsin molecules underwent structural changes at the secondary and tertiary level, although the nature of the structural alterations was different for silica and polystyrene surfaces. AFM imaging of trypsin adsorbed on silica showed clustering of enzyme molecules. Rinsing the silica surface resulted in 20% desorption of the originally adsorbed enzyme molecules. Adsorption of trypsin on the surface of polystyrene was almost irreversible with respect to dilution. After adsorption on silica the enzymatic activity of trypsin was 10 times lower, and adsorbed on polystyrene the activity was completely suppressed. The trypsin molecules that were desorbed from the sorbent surfaces by dilution with buffer regained full enzymatic activity.  相似文献   

12.
The molecular structures of the interfaces between a solid poly(4‐vinyl pyridine) (P4VP) surface and poly(acrylic acid) (PAA) as well as hydrochloric acid (HCl) solutions were probed using sum frequency generation (SFG) vibrational spectroscopy in situ in real time. Spectroscopic results clearly reveal that the PAA molecules are adsorbed onto the P4VP surface via hydrogen bonding at the P4VP/PAA solution interface while the P4VP surface is protonated at the P4VP/HCl solution interface. Consequently, the water molecules near the interfaces are strongly perturbed by these two interactions, exhibiting different orderings at the two interfaces. This work clearly demonstrates the power of studying the interfacial molecular‐level structures via nonlinear vibrational spectroscopy when molecular adsorption happens at the solid–liquid interface and paves a way for our future study on tracing the adsorption dynamics of polymer chains onto solid surfaces. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 848–852  相似文献   

13.
Sum frequency generation (SFG) vibrational spectroscopy has been applied to investigate molecular responses of bovine serum albumin (BSA) molecules adsorbed at different interfacial environments. Molecular level and in situ SFG studies demonstrate that albumin molecules have different adsorption behaviors when contact with fused silica, polystyrene, and poly(methyl methacrylate). Adsorbed albumin molecules exhibit different structural changes when exposed to different chemical environments, including air, water, and hydrophobic solvents. This paper provides direct molecular insight into protein responses to different interfacial environments.  相似文献   

14.
Sum frequency generation (SFG) vibrational spectroscopy has been applied to study the molecular surface structures of polystyrene (PS)/poly(methyl methacrylate) (PMMA) blends and the copolymer between PS and PMMA (PS-co-PMMA) in air, supplemented by atomic force microscopy (AFM) and contact angle goniometer. Both the blend and the copolymer have equal weight amounts of the two components. SFG results show that both components, PS and PMMA, can segregate to the surface of the blend and the copolymer before annealing, although PMMA has a slightly higher surface tension. Upon annealing both SFG results and contact angle measurements indicate that the PS segregates to the surface of the PS/PMMA blend more but no change occurs on the PS-co-PMMA surface. AFM images show that the copolymer surface is flat but the 1:1 PS/PMMA blend has a rougher surface with island like domains present. The annealing effect on the blend surface morphology has also been investigated. We collected amide SFG signals from interfacial fibrinogen molecules at the copolymer or blend/protein solution interfaces as a function of time. Different time-dependent SFG signal changes have been observed, showing that different surfaces of the blend and the copolymer mediate fibrinogen adsorption behavior differently.  相似文献   

15.
We prepared surface-grafted polystyrene (PS) beads with comb-like poly(ethylene glycol) (PEG) chains. To accomplish this, conventional gel-type PS beads (35-75 microm) were treated with ozone gas to introduce hydroperoxide groups onto the surface. Using these hydroperoxide groups, poly(methyl methacrylate) (PMMA, Mn= 22,000-25,000) was grafted onto the surface of the PS beads. The ester groups of the grafted PMMA were reduced to hydroxyl groups with lithium aluminum hydride (LAH). After adding ethylene oxide (EO) to the hydroxyl groups, we obtained the PS-sg-PEG beads, which had a rugged surface and a diameter of 80-150 microm. We could obtain several kinds of the PS-sg-PEG beads by controlling the chain lengths of the grafted PMMA and the molecular weights of the PEG chains. The grafted PEG layer was about 30-50 microm thick, which was verified from the cross-sectioned views of the fluorescamine-labeled beads. These fluorescence images proved that the beads possessed a pellicular structure. Furthermore, we found that the surface-grafted PEG chains had the characteristic property of reducing non-specific protein adsorption on the beads.  相似文献   

16.
This study investigates the structures of layers of amphiphilic diblock copolymers of poly(t-butyl styrene)-poly(styrene sulfonate) (PtBS-PSS) adsorbed on both the bare mica surface (hydrophilic) and an octadecyltriethoxysilane (OTE)-modified mica surface (hydrophobic). When the surface is rendered hydrophobic, the nonsoluble block exhibits stronger interaction with the surface and higher adsorbed masses are achieved. Interaction forces between two such adsorbed layers on both substrates were measured using the surface forces apparatus. The effect of salt concentration (Cs) and molecular weight (N) on the height of the self-assembled layers (L0) was examined in each case. The resulting scaling relationship is in good agreement with predictions of the brush model, L0 proportional to N(1.0) in the low-salt limit and L0N(-1) proportional to (Cs/sigma)(-0.32) in the salted regime, when adsorption takes place onto the hydrophobized mica surface. For adsorption on the bare mica surface, L0N(-0.7) proportional, variant Cs(-0.17) agrees with the scaling prediction of the sparse tethering model. The results suggest that, on the hydrophilic bare mica surface, the adsorbed amount is not high enough to form a brush structure and only very little intermolecular stretching of the tethered chains occurs; in contrast, the presence of the hydrophobic OTE layer increases the tethering density such that the polyelectrolyte chains adopt a brush conformation.  相似文献   

17.
Structural changes of fibrinogen after adsorption to polystyrene (PS) were examined at the PS/protein solution interface in situ using sum frequency generation (SFG) vibrational spectroscopy and attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR). Different behaviors of hydrophobic side chains and secondary structures of adsorbed fibrinogen molecules have been observed. Our results indicate that upon adsorption, the hydrophobic PS surface induces fast structural changes of fibrinogen molecules by aligning some hydrophobic side chains in fibrinogen so that they face to the surface. Such structural changes of fibrinogen hydrophobic side chains are local changes and do not immediately induce significant changes of the protein secondary structures. Our research also shows that the interactions between adsorbed fibrinogen and the PS surface can induce significant changes of protein secondary structures or global conformations which occur on a much longer time scale.  相似文献   

18.
The adsorption of sodium dodecyl sulfate (SDS) from aqueous solution onto a calcium fluoride substrate (CaF(2)), in the presence of polyethylene glycol (PEG) of different molecular weights, has been investigated using the interface specific nonlinear optical technique of sum frequency generation (SFG) vibrational spectroscopy. Spectra of adsorbed SDS (in the C-H stretching region) were recorded at the surface of a CaF(2) prism in contact with SDS solutions at concentrations up to the cmc (8 mM) of the pure surfactant and in contact with binary solutions containing SDS and PEG with molecular weights from 400 to 12 000. In contrast with SFG spectra from the same combinations of surfactant and polymer on a hydrophobic surface, there was no evidence of spectra arising from the actual polymer adsorbed on CaF(2) at any polymer molecular weight either in the absence or presence of surfactant. However, there was indirect evidence for the presence of adsorbed polymer from changes in the SDS SFG spectra in the presence of polymer compared with spectra when the polymer was absent. The SFG spectra of SDS at 0.8 mM were closely similar to each other at all polymer molecular weights and different from the spectra in the absence of the polymer. The spectral differences between the polymer present and polymer absent was much smaller when the solution concentration of surfactant was 8 mM.  相似文献   

19.
The adsorption of bovine serum albumin (BSA) onto polystyrene latexes bearing various amounts of sugar moieties has been investigated as a function of pH and ionic strength and the results were compared to those for bare polystyrene latexes having negative surface charges. The functionalized latexes were produced by seeded copolymerization of (0.3 μm) liposaccharidic monomer onto polystyrene particles obtained by soap-free emulsion polymerization of styrene using potassium persulfate as initiator. At first, the electrophoretic mobility behavior of the various latexes was examined as a function of pH: a significant decrease was observed in the case of saccharide-containing latex particles compared to the bare particles. The adsorption of BSA onto these latexes exhibited a reduced amount of adsorbed BSA for those latex particles bearing saccharide groups. This adsorbed amount depends on the yield of saccharidic monomer incorporated onto the surfaces of the latex particles.  相似文献   

20.
A simple technique for patterning proteins utilizing dewetted polystyrene (PS) droplets is demonstrated. A polystyrene thin film was spin coated on a poly(ethylene glycol) (PEG) silane-modified surface. As the PS film dewets from the surface, upon annealing, to form droplets, the PEG-silane-modified surface is exposed, which retains its capability to resist protein adsorption, and the PS droplets allow the selective adsorption of proteins. In contrast to the undewetted flat PS film, the droplet surface had a greater amount of adsorbed proteins. Atomic force microscopy scans reveal that the roughness of the droplet surface is higher, and a multilayer of proteins results on the droplet surface. Moreover, micro- and nanoscale droplet patterns can easily be achieved by tuning the thickness of PS thin films. Because dewetting approaches for generating ordered dewetting droplets have been successfully generated by others, those approaches could be easily combined with this technique to fabricate ordered protein patterns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号