首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 172 毫秒
1.
Be-doped GaAs/p-Al Ga As QW-HEMT structures with well width of and 50 nm were simultaneously grown on (4 1 1)A and (1 0 0) GaAs substrates by MBE. Be-doping concentration in the p-Al Ga As layer was , and the undoped Al Ga As spacer layer was 6 nm thick. Hole concentration was about for nm. Hole mobility at 10 K in the conventional (1 0 0) samples remained almost constant (about 20 000 cm (V s) for the current in the direction) with decreasing down to 7 nm and it rapidly decreased to 2760 cm (V s) at nm. On the other hand, in the (4 1 1)A samples, hole mobility (10 K) increased from 17 500 cm (V s) nm) to 33 900 cm (V s) nm) and dropped rapidly down to 4090 cm (V s) nm) for a current direction of . This significant enhancement of hole mobility in the (4 1 1)A samples is mainly due to (1) the significantly reduced interface roughness scattering of 2DHG when using the (4 1 1)A super-flat interfaces and (2) the reduced effective mass of holes in the narrow (4 1 1)A QWs ( –20 nm). Shubnikov–de Haas (SdH) measurements on the (4 1 1)A QW sample nm) confirmed the reduced effective mass (0.30 ) of holes.  相似文献   

2.
(3 1 1)A GaAs/AlAs corrugated superlattices (CSLs) and satellite (3 1 1)B and (1 0 0) SLs were studied using Raman spectroscopy, high-resolution transmittance electron microscopy (HRTEM) and photoluminescence (PL). The thickness of GaAs layers was varied from 1 monolayer (ML) to 10 ML, the thickness of AlAs barriers was 10 ML in (3 1 1) direction. The strongest modification of the Raman spectra is found for the case of partial (<1 nm) GaAs filling of the AlAs surface. The calculated and experimental Raman spectra demonstrated a good agreement for both complete (1 nm) and partial (<1 nm) GaAs filling of the AlAs surface. According to Raman and HRTEM data, in the case of partial filling of (3 1 1)A AlAs surface, GaAs forms quantum well wires of finite length (quantum dots). A drastic difference of PL from grown side-by-side (3 1 1)A and (3 1 1)B SLs was observed. A strong room temperature PL in the green–yellow spectral region was observed in GaAs/AlAs (3 1 1)A CSLs containing GaAs type-II quantum dots.  相似文献   

3.
We have investigated the influence of vicinal GaAs substrates on the optical and electronic properties of InGaAs/GaAs quantum wells (QWs). A single In0.10Ga0.90As QW was grown by molecular-beam epitaxy on a vicinal GaAs(0 0 1) substrate with a miscut angle of 0° (nominal), 2°, 4° and 6° towards [1 1 0]. The carrier diffusion was obtained by a micro-photoluminescence scan technique that permits to observe the effective diffusion length characterized by the lateral spread of carriers in the QW followed by radiative recombination. The carrier diffusion length was obtained parallel (L||) and perpendicular (L) to the atomic steps. The diffusion length decreases as the temperature increases up to 100 K. Above this temperature we found different behaviours that depend on the sample miscut angle.  相似文献   

4.
We study the effect of the GaAsN narrow QWs on the optical properties of the GaInNAsSb/GaAs QWs using photoluminescence spectroscopy. A drastic effect of the N-rich layers on the QW photoluminesecnec (PL) intensity was observed with a strong influence of the spacer thickness. In the PL spectra a broad band caused by excitonic transitions related with N-related clusters in GaAs barriers is found. Based on calculations from experimental data, we have identified the low QW peak energy to the E1-H1 transition using the shear deformation potentials report Δp/p = 0.24.  相似文献   

5.
We report an investigation of the interface quality of the Al0.2Ga0.8As/GaAs triple quantum wells (QWs) grown on the GaAs substrates 0° and 6° off (100) towards 〈111〉A at a high CO environment, using the photoluminescence technique. The direct correlation between the quantum well quality and the performance of lasers which contain such quantum wells as an active region is also reported. It is found that impurity-related photoluminescence is observed only in the sample grown on the exact (100) GaAs substrate but not in the tilted one, as confirmed by temperature dependence results. The full width at half maximum (FWHM) of the intrinsic luminescence is as high as 9.0 meV in the 0° tilted samples and decreases to 3.10 meV in the samples misoriented 6°, indicating a remarkable difference in their interface quality. The impurities incorporated into the interfaces of the QWs are carbon, incorporation of which becomes unobservable by photoluminescence when the quantum wells are grown on substrates misoriented by 6° degrees. The threshold current and quantum efficiency of the laser devices with Al0.2Ga0.8As/GaAs quantum wells as their active region are found to be directly related to the interfacial quality of the quantum wells.  相似文献   

6.
郝国栋  班士良  贾秀敏 《中国物理》2007,16(12):3766-3771
By taking the influence of optical phonon modes into account, this paper adopts the dielectric continuum phonon model and force balance equation to investigate the electronic mobility parallel to the interfaces for AlAs/GaAs semiconductor quantum wells (QWs) under hydrostatic pressure. The scattering from confined phonon modes, interface phonon modes and half-space phonon modes are analysed and the dominant scattering mechanisms in wide and narrow QWs are presented. The temperature dependence of the electronic mobility is also studied in the temperature range of optical phonon scattering being available. It is shown that the electronic mobility reduces obviously as pressure increases from 0 to 4GPa, the confined longitudinal optical (LO) phonon modes play an important role in wide QWs, whereas the interface optical phonon modes are dominant in narrow QWs, the half-space LO phonon modes hardly influence the electronic mobility expect for very narrow QWs.  相似文献   

7.
The use of Raman scattering in different polarization geometries makes it possible to observe the splitting of transverse optical (TO) phonon modes confined in GaAs/AlAs superlattices grown on faceted GaAs (311)A surfaces. The frequencies of TO modes with atomic displacements in the direction along the facets were observed to be higher than in the transverse one. Increased splitting, up to 3.5 cm  1, was observed for (311)A superlattices when the average thickness of the GaAs layers was 6 monolayers or less. The splitting was absent in superlattices grown on (311)B surfaces under the same conditions. The effect of splitting is reputed to be caused by corrugation of GaAs/AlAs (311)A interfaces and formation of lateral superlattices or arrays of quantum wires, depending on the GaAs layer thickness.  相似文献   

8.
In this work, we demonstrate the thin AlAs layer insertion into GaAs/AlGaAs quantum well (QW) structures and its influence in energy transition in the frequency range of mid-infrared. To realize the more accurate calculation, the graded interface model of QW structures is integrated into our self-consistent solving of Schrodinger and Poisson equations to obtain the energy level and envelope wave functions of QW. We find the thin AlAs layer inserted at various positions in the well can obviously tune intersubband optical transitions. The corresponding tuning range can be 50 meV. We find that the thicker AlAs layer (2 monolayers) can provide wider tuning range and larger oscillator strength between subbands 1 and 3, compared with the thinner one (1 monolayer). Our results suggest that thin semiconductor layer may be an idea optimization design for the quantum well terahertz lasers which are based on optical pumping with mid-infrared lasers.  相似文献   

9.
GaAs/AlAs superlattices grown simultaneously on GaAs substrates with the (311)A and (311)B orientations have been studied by photoluminescence and high-resolution transmission electron microscopy with a Fourier analysis of images. A periodic interface corrugation is observed for (311)B superlattices. A comparison of the structure of (311)A and (311)B superlattices indicates that the corrugation occurs in both cases and its period along the $[01\overline 1 ]$ direction is equal to 3.2 nm. The corrugation is less pronounced in (311)B superlattices, wherein it exhibits an additional modulation (long-wavelength disorder) with the characteristic lateral size exceeding 10 nm. The vertical correlation of regions rich in GaAs and AlAs, which is well observed in (311)A superlattices, is weak in (311)B superlattices due to the occurrence of long-wavelength disorder. The optical properties of (311)B superlattices are similar to those of (100) ones and differ radically from those of (311)A superlattices. As distinct from (311)B, strong photoluminescence polarization anisotropy is observed for (311)A superlattices. It is shown that it is the interface corrugation rather than the crystallographic (311) surface orientation that determines the optical properties of (311)A corrugated superlattices with thin GaAs and AlAs layers.  相似文献   

10.
We investigate the effects of a thin AlAs layer with different position and thickness on the optical properties of InAs quantum dots (QDs) by using transmission electron microscopy and photoluminescence (PL). The energy level shift of InAs QD samples is observed by introducing the thin AlAs layer without any significant loss of the QD qualities. The emission peak from InAs QDs directly grown on the 4 monolayer (ML) AlAs layer is blueshifted from that of reference sample by 219 meV with a little increase in FWHM from 42–47 meV for ground state. In contrast, InAs QDs grown under the 4 ML AlAs layer have PL peak a little redshifted to lower energy by 17 meV. This result is related to the interdiffusion of Al atom at the InAs QDs caused by the annealing effect during growing of InAs QDs on AlAs layer.  相似文献   

11.
We propose a new method to considerably reduce the overall growth interruption for high-quality GaAs single quantum wells during molecular beam epitaxy. The insertion of ultrathin AlAs smoothing layers at the constituent GaAs/Al x Ga1–x As heterointerfaces and growth interruptions of not more than 15 s yields an improvement of the luminescence linewidth (FWHM) to 0.56 meV for a 13 nm wide GaAs well and to a value as low as 0.195 meV for a 27 nm wide GaAs well. In addition, no Stokes shift between absorption and emission and no line splitting due to monolayer fluctuations in the well width is observed.  相似文献   

12.
The ground state energy of quasi-two-dimensional electron-hole liquid (EHL) at zero temperature is calculated for type-II (GaAs)m/(AlAs)m (5≤m≤10) quantum wells (QWs). The correlation effects of Coulomb interaction are taken into account by a random phase approximation of Hubbard. Our EHL ground state energy per electron-hole pair is lower than the exciton energy calculated recently for superlattices, so we expected that EHL is more stable state than excitons at high excitation density. It is also demonstrated that the equilibrium density of EHL in type-II GaAs/AlAs QWs is of one order of magnitude larger than that in type-I GaAs/AlAs QWs.  相似文献   

13.
我们利用光荧光(PL)以及时间分辨光谱(TRPL)研究了用MBE生长在GaAs衬底上的GaNAs/GaAs量子阱的激子局域化以及退局域化.研究发现,在低温下用连续光(Cw)激发,由于GaNAs中势振荡所产生的局域激子发光是所测量到光谱的主要发光来源.然而在脉冲激发下,情况完全不同.在高载流子密度激发或者高温下GaNAs/GaAs量子阱中例外,一个高能端的PL峰成为了主要的发光来源.通过研究,我们将这个新的发光峰指认为量子阱中非局域激子复合的PL峰.这个发光峰在温度和激发强度的变化过程中与局域激子相互竞争.我们相信这一过程也是许多文献所报道的在InGaN和AlGaN等氮化物中经常观测到的发光峰位随温度"S"形变化的主要根源.  相似文献   

14.
The interface morphology of GaAs/AlAs superlattices grown by molecular beam epitaxy on misoriented (001) GaAs substrates has been investigated using X-ray diffraction techniques in addition to high-resolution transmission electron microscopy (HRTEM). We observe that the width and intensity of the satellite peaks are very sensitive to the step-edge orientation. Among the investigated ones ([ 110], [100], [110]), it is the [ 10] step-edge direction which is the most favourable to a regular growth of superlattice structures. Structural models based on HRTEM observations (step distribution at interfaces and local fluctuation of layer thickness) have been constructed, allowing an explanation of the X-ray diagrams.  相似文献   

15.
《Current Applied Physics》2014,14(8):1063-1066
A ferromagnetic ordering with a Curie temperature of 50 K of fifteen layer of InGaMnAs/GaAs multi quantum wells (MQWs) structure grown on high resistivity (100) p-type GaAs substrates by molecular beam epitaxy (MBE) was found. It is likely that the ferromagnetic exchange coupling of sample with Curie temperature of 50 K is hole-mediated resulting in Mn substituting In or Ga sites. Temperature and excitation power dependent PL emission spectra of InGaMnAs MQWs sample grown at temperature of 170 °C show that an activation energy of Mn ion on the first quantum confinement level in InGaAs quantum well is 36 meV and impurity Mn is partly ionized. It is found that the activation energy of 36 meV of Mn ion in the QW is lower than the activation energy of 110 meV for a substitutional Mn impurity in GaAs. These measurements provide strong evidence that an impurity band existing in the bandgap due to substitutional Mn ions and it is the location of the Fermi level within the impurity band that determines Curie temperature.  相似文献   

16.
Various temperature measurements of cyclotron resonance (CR) under pulsed ultra-high magnetic field up to 160 T were carried out in InGaAs/GaAs superlattice (SL) and InGaAs/AlAs SL samples grown by molecular beam epitaxy on GaAs substrates. Clear free-electron CR and impurity CR signals were observed in transmission of CO2 laser with wavelength of 10.6 μm. A binding energy of impurities in these SLs was roughly estimated based on the experiment as result, and we found it was smaller than the previous experimental result of GaAs/AlAs SLs and theoretical calculation with a simple model.  相似文献   

17.
We investigate oriented abrupt steps (OASs), a type of surface defect in InSb/AlxIn1−xSb quantum-well (QW) samples grown on GaAs (0 0 1) substrates. Previous atomic force microscopy studies have reported that the OASs are oriented along the [1 1 0] and directions and have an inclination angle of 5°–15° with respect to the sample surface. Our plan-view and cross-sectional transmission electron microscopy analyses reveal that the OASs are the terminal edges of threading micro-twins at the sample surface. Hall effect measurements indicate that the density of OASs correlates with the electron mobility in the InSb QWs.  相似文献   

18.
Photoluminescence (PL) linewidth broadening of CdxZn1 − xSe/ZnSe triple quantum wells, grown on GaAs substrates by molecular beam epitaxy (MBE), has been investigated. Various quantum well (QW) samples have been prepared with different QW thickness and composition (Cd-composition). Measured and calculated PL linewidth are compared. Both composition and thickness fluctuations are considered for the calculation with the parameters such as the volume of exciton, nominal thickness and composition of QWs. Surface roughness measured by atomic force microscopy (AFM) is used to estimate the interface roughness. Results show that when Cd-composition increases additional linewidth broadening due to Zn/Cd interdiffusion is enhanced.  相似文献   

19.
我们利用光荧光(PL)以及时间分辨光谱(TRPL)研究了用MBE生长在GaAs衬底上的GaNAs/GaAs量子阱的激子局域化以及退局域化。研究发现,在低温下用连续光(CW)激发,由于GaNAs中势振荡所产生的局域激子发光是所测量到光谱的主要发光来源。然而在脉冲激发下,情况完全不同。在高载流子密度激发或者高温下GaNAs/GaAs量子阱中例外,一个高能端的PL峰成为了主要的发光来源。通过研究,我们将这个新的发光峰指认为量子阱中非局域激子复合的PL峰。这个发光峰在温度和激发强度的变化过程中与局域激子相互竞争。我们相信这一过程也是许多文献所报道的在InGaN和AlGaN等氮化物中经常观测到的发光峰位随温度“S”形变化的主要根源。  相似文献   

20.
The growth of InAs quantum dots (QDs) on InP (1 0 0) and (3 1 1)A substrates by chemical-beam epitaxy is studied. The InAs QDs are embedded in a GaInAsP layer lattice-matched to InP. We demonstrate an effective way to continuously tune the emission wavelength of InAs QDs grown on InP (1 0 0). With an ultra-thin GaAs layer inserted between the QD layer and the GaInAsP buffer, the peak wavelength from the InAs QDs can be continuously tuned from above 1.6 μm down to 1.5 μm at room temperature. The major role of the thin GaAs layer is to greatly suppress the As/P exchange during the deposition of InAs and subsequent growth interruption under arsenic flux, as well as to consume the segregated In layer floating on the GaInAsP buffer. Moreover, it is found that InP (3 1 1)A substrates are particularly promising for formation of uniform InAs QDs. The growth of InAs on InP (3 1 1)A consists of two stages: nanowire formation due to strain-driven growth instability and subsequent QD formation on top of the wires. The excellent size uniformity of the InAs QDs obtained on InP (3 1 1)A manifests itself in the narrow photoluminescence line width of 26 meV at 4.8 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号