首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 535 毫秒
1.
智能制造和即时配送环境下的备件生产与运输协同调度问题是目前国内研究的一大热点,这是因为备件供应链响应速度已成为当前备件制造企业赢得客户的关键因素。为了提高客户满意度,尽可能缩短从客户下达定制化生产订单到订单配送完成的时间,本文建立了以所有客户总等待时间最短为目标的混合整数规划模型和集合覆盖模型,推导了最优解性质,并设计改进的分支定价算法求得最优解。通过将小规模算例结果与CPLEX进行对比,验证了模型和算法的有效性。多组算例测试结果表明,所提出的模型和算法可以有效提升智能制造环境下的备件供应链运作效率。  相似文献   

2.
Spare parts demands are usually generated by the need of maintenance either preventively or at failures. These demands are difficult to predict based on historical data of past spare parts usages, and therefore, the optimal inventory control policy may be also difficult to obtain. However, it is well known that maintenance costs are related to the availability of spare parts and the penalty cost of unavailable spare parts consists of usually the cost of, for example, extended downtime for waiting the spare parts and the emergency expedition cost for acquiring the spare parts. On the other hand, proper planned maintenance intervention can reduce the number of failures and associated costs but its performance also depends on the availability of spare parts. This paper presents the joint optimisation for both the inventory control of the spare parts and the Preventive Maintenance (PM) inspection interval. The decision variables are the order interval, PM interval and order quantity. Because of the random nature of plant failures, stochastic cost models for spare parts inventory and maintenance are derived and an enumeration algorithm with stochastic dynamic programming is employed for finding the joint optimal solutions over a finite time horizon. The delay-time concept developed for inspection modelling is used to construct the probabilities of the number of failures and the number of the defective items identified at a PM epoch, which has not been used in this type of problems before. The inventory model follows a periodic review policy but with the demand governed by the need for spare parts due to maintenance. We demonstrate the developed model using a numerical example.  相似文献   

3.
In this paper we develop a stochastic programming approach to solve a multi-period multi-product multi-site aggregate production planning problem in a green supply chain for a medium-term planning horizon under the assumption of demand uncertainty. The proposed model has the following features: (i) the majority of supply chain cost parameters are considered; (ii) quantity discounts to encourage the producer to order more from the suppliers in one period, instead of splitting the order into periodical small quantities, are considered; (iii) the interrelationship between lead time and transportation cost is considered, as well as that between lead time and greenhouse gas emission level; (iv) demand uncertainty is assumed to follow a pre-specified distribution function; (v) shortages are penalized by a general multiple breakpoint function, to persuade producers to reduce backorders as much as possible; (vi) some indicators of a green supply chain, such as greenhouse gas emissions and waste management are also incorporated into the model. The proposed model is first a nonlinear mixed integer programming which is converted into a linear one by applying some theoretical and numerical techniques. Due to the convexity of the model, the local solution obtained from linear programming solvers is also the global solution. Finally, a numerical example is presented to demonstrate the validity of the proposed model.  相似文献   

4.
This research is motivated by an automobile manufacturing supply chain network. It involves a multi-echelon production system with material supply, component fabrication, manufacturing, and final product distribution activities. We address the production planning issue by considering bill of materials and the trade-offs between inventories, production costs and customer service level. Due to its complexity, an integrated solution framework which combines scatter evolutionary algorithm, fuzzy programming and stochastic chance-constrained programming are combined to jointly take up the issue. We conduct a computational study to evaluate the model. Numerical results using the proposed algorithm confirm the advantage of the integrated planning approach. Compared with other solution methodologies, the supply chain profits from the proposed approach consistently outperform, in some cases up to 13% better. The impacts of uncertainty in demand, material price, and other parameters on the performance of the supply chain are studied through sensitivity analysis. We found the proposed model is effective in developing robust production plans under various market conditions.  相似文献   

5.
Production planning problems play a vital role in the supply chain management area, by which decision makers can determine the production loading plan—consisting of the quantity of production and the workforce level at each production plant—to fulfil market demand. This paper addresses the production planning problem with additional constraints, such as production plant preference selection. To deal with the uncertain demand data, a stochastic programming approach is proposed to determine optimal medium-term production loading plans under an uncertain environment. A set of data from a multinational lingerie company in Hong Kong is used to demonstrate the robustness and effectiveness of the proposed model. An analysis of the probability distribution of economic demand assumptions is performed. The impact of unit shortage costs on the total cost is also analysed.  相似文献   

6.
A multi-period stochastic planning model has been developed and implemented for a supply chain network of a petroleum organization operating in an oil producing country under uncertain market conditions. The proposed supply chain network consists of all activities related to crude oil production, processing and distribution. Uncertainties were introduced in market demands and prices. A deterministic optimization model was first developed and tested. The impact of uncertainty on the supply chain was studied by performing a sensitivity analysis in which ±20% deviations were introduced in market demands and prices of different commodities. A stochastic formulation was then proposed, which is based on the two-stage problem with finite number of realizations. The proposed stochastic programming approach proved to be quite effective in developing resilient production plans in light of high degree of uncertainty in market conditions. The anticipated production plans have a considerably lower expected value of perfect information (EVPI). The main conclusion of this study is that for an oil producing country with oil processing capabilities, the impact of economic uncertainties may be tolerated by an appropriate balance between crude exports and processing capacities.  相似文献   

7.
考虑一个时变需求环境下集成多级供应链问题,在有限的规划时间内销售商以固定周期订货,而生产商以不同的周期生产,目的是寻找销售商最优的订货周期和生产商最佳的生产策略,从而使供应链系统的总运营成本最少.建立了该问题的混合整数非线性规划模型,求解该模型分为两步:先求对应一个订货周期的最佳生产策略,再求最优的订货周期,第一步用到了图论里求最短路方法.给出了两个步骤的算法和程序,实验证明它们是有效的.通过算例对模型进行了分析,研究了各参数对最优解及最小费用的影响.  相似文献   

8.
This paper addresses the problem of short-term supply chain design using the idle capacities of qualified partners in order to seize a new market opportunity. The new market opportunity is characterized by a deterministic forecast over a planning horizon. The production–distribution process is assumed to be organized in stages or echelons, and each echelon may have several qualified partners willing to participate. Partners within the echelon may differ in idle production capacity, operational cost, storage cost, etc, and we assume that idle capacity may be different from one period to another period. The objective is to design a supply chain by selecting one partner from each echelon to meet the forecasted demand without backlog and best possible production and logistics costs over the given planning horizon. The overall problem is formulated as a large mixed integer linear programming problem. We develop a decomposition-based solution approach that is capable of overcoming the complexity and dimensionality associated with the problem. Numerical results are presented to support the effectiveness of this approach.  相似文献   

9.
Considering the inherent connection between supplier selection and inventory management in supply chain networks, this article presents a multi-period inventory lot-sizing model for a single product in a serial supply chain, where raw materials are purchased from multiple suppliers at the first stage and external demand occurs at the last stage. The demand is known and may change from period to period. The stages of this production–distribution serial structure correspond to inventory locations. The first two stages stand for storage areas for raw materials and finished products in a manufacturing facility, and the remaining stages symbolize distribution centers or warehouses that take the product closer to customers. The problem is modeled as a time-expanded transshipment network, which is defined by the nodes and arcs that can be reached by feasible material flows. A mixed integer nonlinear programming model is developed to determine an optimal inventory policy that coordinates the transfer of materials between consecutive stages of the supply chain from period to period while properly placing purchasing orders to selected suppliers and satisfying customer demand on time. The proposed model minimizes the total variable cost, including purchasing, production, inventory, and transportation costs. The model can be linearized for certain types of cost structures. In addition, two continuous and concave approximations of the transportation cost function are provided to simplify the model and reduce its computational time.  相似文献   

10.
研究一类集成工件加工和发送的供应链排序模型,即研究如何安排工件在自由作业机器上加工,把加工完毕的工件分批发送给下游客户,使得含生产排序费用和发送费用的目标函数最优.这里,分别取工件最大送到时间和平均送到时间为生产排序费用;而发送费用是由固定费用和与运输路径有关的变化费用组成.利用排序理论和动态规划方法,构造了自由作业供应链排序问题的多项式时间近似算法,并分析算法的性能比.  相似文献   

11.
Supply chain planning as one of the most important processes within the supply chain management concept, has a great impact on firms’ success or failure. This paper considers a supply chain planning problem of an agile manufacturing company operating in a build-to-order environment under various kinds of uncertainty. An integrated optimization approach of procurement, production and distribution costs associated with the supply chain members has been taken into account. A robust optimization scenario-based approach is used to absorb the influence of uncertain parameters and variables. The formulation is a robust optimization model with the objective of minimizing the expected total supply chain cost while maintaining customer service level. The developed multi-product, multi-period, multi-echelon robust mixed-integer linear programming model is then solved using the CPLEX optimization studio and guidance related to future areas of research is given.  相似文献   

12.
Given a set of m resources and n tasks, the dynamic capacity acquisition and assignment problem seeks a minimum cost schedule of capacity acquisitions for the resources and the assignment of resources to tasks, over a given planning horizon of T periods. This problem arises, for example, in the integrated planning of locations and capacities of distribution centers (DCs), and the assignment of customers to the DCs, in supply chain applications. We consider the dynamic capacity acquisition and assignment problem in an environment where the assignment costs and the processing requirements for the tasks are uncertain. Using a scenario based approach, we develop a stochastic integer programming model for this problem. The highly non-convex nature of this model prevents the application of standard stochastic programming decomposition algorithms. We use a recently developed decomposition based branch-and-bound strategy for the problem. Encouraging preliminary computational results are provided.  相似文献   

13.
In this paper, we investigated a dynamic modelling technique for analysing supply chain networks using generalised stochastic Petri nets (GSPNs). The customer order arrival process is assumed to be Poisson and the service processes at the various facilities of the supply chain are assumed to be exponential. Our model takes into account both the procurement process and delivery logistics that exist between any two members of the supply chain. We compare the performance of two production planning and control policies, the make-to-stock and the assemble-to-order systems in terms of total cost which is the sum of inventory carrying cost and cost incurred due to delayed deliveries. We formulate and solve the decoupling point location problem in supply chains as a total relevant cost (sum of inventory carrying cost and the delay costs) minimisation problem. We use the framework of integrated GSPN-queuing network modelling—with the GSPN at the higher level and a generalised queuing network at the lower level—to solve the decoupling point location problem.  相似文献   

14.
《Applied Mathematical Modelling》2014,38(11-12):2819-2836
This paper studies the cost distribution characteristics in multi-stage supply chain networks. Based on the graphical evaluation and review technique, we propose a novel stochastic network mathematical model for cost distribution analysis in multi-stage supply chain networks. Further, to investigate the effects of cost components, including the procurement costs, inventory costs, shortage costs, production costs and transportation costs of supply chain members, on the total supply chain operation cost, we propose the concept of cost sensitivity and provide corresponding algorithms based on the proposed stochastic network model. Then the model is extended to analyze the cost performance of supply chain robustness under different order compensation ability scenarios and the corresponding algorithms are developed. Simulation experiment shows the effectiveness and flexibility of the proposed model, and also promotes a better understanding of the model approach and its managerial implications in cost management of supply chains.  相似文献   

15.
Nowadays, due to some social, legal, and economical reasons, dealing with reverse supply chain is an unavoidable issue in many industries. Besides, regarding real-world volatile parameters, lead us to use stochastic optimization techniques. In location–allocation type of problems (such as the presented design and planning one), two-stage stochastic optimization techniques are the most appropriate and popular approaches. Nevertheless, traditional two-stage stochastic programming is risk neutral, which considers the expectation of random variables in its objective function. In this paper, a risk-averse two-stage stochastic programming approach is considered in order to design and planning a reverse supply chain network. We specify the conditional value at risk (CVaR) as a risk evaluator, which is a linear, convex, and mathematically well-behaved type of risk measure. We first consider return amounts and prices of second products as two stochastic parameters. Then, the optimum point is achieved in a two-stage stochastic structure regarding a mean-risk (mean-CVaR) objective function. Appropriate numerical examples are designed, and solved in order to compare the classical versus the proposed approach. We comprehensively discuss about the effectiveness of incorporating a risk measure in a two-stage stochastic model. The results prove the capabilities and acceptability of the developed risk-averse approach and the affects of risk parameters in the model behavior.  相似文献   

16.
This paper presents an approximation model for optimizing reorder points in one-warehouse N-retailer inventory systems subject to highly variable lumpy demand. The motivation for this work stems from close cooperation with a supply chain management software company, Syncron International, and one of their customers, a global spare parts provider. The model heuristically coordinates the inventory system using a near optimal induced backorder cost at the central warehouse. This induced backorder cost captures the impact that a reorder point decision at the warehouse has on the retailers’ costs, and decomposes the multi-echelon problem into solving N + 1 single-echelon problems. The decomposition framework renders a flexible model that is computationally and conceptually simple enough to be implemented in practice.  相似文献   

17.
A major task in service management is the timely and cost efficient provision of spare parts for durable products. This especially holds good, when the regular production of the product, its components and parts has been discontinued, but customer service still has to be guaranteed for quite a long time. In such post product life cycle period, three options are available to organize the spare parts acquisition, namely (i) setting up a single large order within the final lot of regular production, (ii) performing extra production runs until the end of service and (iii) using remanufacturing to gain spare parts from used products. These three options are characterized by different cost and flexibility properties. Due to the time-variability and uncertainty of demands for spare parts and also that of the returns of used products, it is a challenging task to find out the optimal combination of these three options. In this paper we show how this problem can be modeled and solved by Decision Tree and stochastic Dynamic Programming procedure. Based on the Dynamic Programming approach a heuristic method is proposed, which can be employed to come up with a simple solution procedure for real-world spare parts acquisition problems during the post product life cycle. A numerical example is presented to demonstrate the application of the solution methods described in the paper.  相似文献   

18.
在考虑预防性维修周期和提前期不确定的条件下,分别研究备件存储与其相关的维修费用、缺货费用、库存费用以及订购费用等四种费用之间的关系,明确了备件存储量对各项费用的影响.以各项费用总和最小化为目标,构建了提前期不确定条件下的预防性维修备件存储模型.通过备件存储模型的构建,对备件存储过程中的各项成本进行分析,以期对备件库存策略的确定给出一种解决方案.  相似文献   

19.
A multi-product, multi-period, multi-site supply chain production and transportation planning problem, in the textile and apparel industry, under demand and price uncertainties is considered in this paper. The problem is formulated using a two-stage stochastic programming model taking into account the production amount, the inventory and backorder levels as well as the amounts of products to be transported between the different plants and customers in each period. Risk management is addressed by incorporating a risk measure into the stochastic programming model as a second objective function, which leads to a multi-objective optimization model. The objectives aim to simultaneously maximize the expected net profit and minimize the financial risk measured. Two risk measures are compared: the conditional-value-at-risk and the downside risk. As the considered objective functions conflict with each other’s, the problem solution is a front of Pareto optimal robust alternatives, which represents the trade-off among the different objective functions. A case study using real data from textile and apparel industry in Tunisia is presented to illustrate the effectiveness of the proposed model and the robustness of the obtained solutions.  相似文献   

20.
This paper proposes a mixed integer linear programming model and solution algorithm for solving supply chain network design problems in deterministic, multi-commodity, single-period contexts. The strategic level of supply chain planning and tactical level planning of supply chain are aggregated to propose an integrated model. The model integrates location and capacity choices for suppliers, plants and warehouses selection, product range assignment and production flows. The open-or-close decisions for the facilities are binary decision variables and the production and transportation flow decisions are continuous decision variables. Consequently, this problem is a binary mixed integer linear programming problem. In this paper, a modified version of Benders’ decomposition is proposed to solve the model. The most difficulty associated with the Benders’ decomposition is the solution of master problem, as in many real-life problems the model will be NP-hard and very time consuming. In the proposed procedure, the master problem will be developed using the surrogate constraints. We show that the main constraints of the master problem can be replaced by the strongest surrogate constraint. The generated problem with the strongest surrogate constraint is a valid relaxation of the main problem. Furthermore, a near-optimal initial solution is generated for a reduction in the number of iterations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号