首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 703 毫秒
1.
本文报道了一种3D打印蛋白质模型的方法,得到了一系列不同的蛋白质模型。这些模型可作为可视化教具,帮助学生理解蛋白质多级结构、蛋白质折叠、蛋白质-蛋白质相互作用等相关知识点,同时也可作为艺术展示教具应用于科学交流与科普宣传。  相似文献   

2.
蛋白质折叠是目前结构生物学领域的核心问题之一, 理解蛋白质结构折叠机制及其与生物功能之间的相互关系一直是生命科学家非常重要的研究内容, 并且该研究受到越来越多不同学科领域研究工作者的高度重视. 蛋白质大多数在数十毫秒、微秒或几秒内完成自我折叠过程, 但其折叠过程中所发生的分子结构精细转变却在纳秒甚至更短时间尺度内完成. 由于其折叠时间分辨率的限制, 目前无论是从常规实验还是理论计算角度对其研究都存在一定的难度. 本文首先概述了蛋白质折叠研究在实验和理论模拟方面存在的一些问题,然后以结构典型且可快速折叠的人工设计多肽Trp-cage为例,主要对其折叠过渡温度、折叠形成模型及其肽链上关键氨基酸残基在折叠过程中的作用三个方面进行了详细讨论, 综述了模型多肽Trp-cage的折叠动力学行为分别在实验和理论模拟方面的研究进展. 最后就如何有效化解蛋白质残基间相互作用网络进而降低其折叠机制的复杂性提出了一些新的建议, 不仅有助于阐明该迷你蛋白Trp-cage快速折叠、稳定形成的驱动力成因, 而且也能为蛋白质折叠机制研究和多肽设计提供有益参考.  相似文献   

3.
天然无序蛋白质是一类新发现的蛋白质,它们在天然条件下没有确定的三维结构,却具有正常的生物学功能,广泛参与信号传递、DNA转录、细胞分裂和蛋白质聚集等重要的生理与病理过程.无序蛋白质的发现是对传统的蛋白质"序列-结构-功能"范式的挑战.在这篇综述里,我们首先回顾了蛋白质的传统范式以及无序蛋白质的发现过程,然后介绍无序蛋白质在结构、序列、功能等方面的特征与相互作用,并以分子识别过程为例,进一步阐述目前国际上对无序蛋白质所具有优势的一些认识与观点.我们还分析了无序蛋白质研究在生命科学和医学等领域的应用前景,并介绍了国内在无序蛋白质领域的研究现状.  相似文献   

4.
蛋白质折叠类型的分类建模与识别   总被引:2,自引:0,他引:2  
刘岳  李晓琴  徐海松  乔辉 《物理化学学报》2009,25(12):2558-2564
蛋白质的氨基酸序列如何决定空间结构是当今生命科学研究中的核心问题之一. 折叠类型反映了蛋白质核心结构的拓扑模式, 折叠识别是蛋白质序列-结构研究的重要内容. 我们以占Astral 1.65序列数据库中α, β和α/β三类蛋白质总量41.8%的36个无法独立建模的折叠类型为研究对象, 选取其中序列一致性小于25%的样本作为训练集, 以均方根偏差(RMSD)为指标分别进行系统聚类, 生成若干折叠子类, 并对各子类建立基于多结构比对算法(MUSTANG)结构比对的概形隐马尔科夫模型(profile-HMM). 将Astral 1.65中序列一致性小于95%的9505个样本作为检验集, 36个折叠类型的平均识别敏感性为90%, 特异性为99%, 马修斯相关系数(MCC)为0.95. 结果表明: 对于成员较多, 无法建立统一模型的折叠类型, 基于RMSD的系统分类建模均可实现较高准确率的识别, 为蛋白质折叠识别拓展了新的方法和思路, 为进一步研究奠定了基础.  相似文献   

5.
作为从分子水平上阐明生命奥秘的中心课题之一,蛋白质的折叠问题一直受到生物化学、生物物理学和结构生物学等领域研究工作者的高度关注。在蛋白质的变性过程中,它们往往达不到完全去折叠,而是会形成不同的部分折叠中间态[1-3],这些部分折叠中间态在蛋白质折叠过程中起着重要作  相似文献   

6.
Aoneng Cao 《物理化学学报》2020,36(1):1907002-0
蛋白质折叠问题被称为第二遗传密码,至今未破译;蛋白质序列的天书仍然是"句读之不知,惑之不解"。在最近工作的基础上,我们提出了蛋白质结构的"限域下最低能量结构片段"假说。这一假说指出,蛋白质中存在一些关键的长程强相互作用位点,这些位点相当于标点符号,将蛋白质序列的天书变成可读的句子(多肽片段)。这些片段的天然结构是在这些强长程相互作用位点限域下的能量最低状态。完整的蛋白质结构由这些"限域下最低能量结构片段"拼合而成,而蛋白质整体结构并不一定是全局性的能量最低状态。在蛋白质折叠过程中,局部片段的天然结构倾向性为强长程相互作用的形成提供主要基于焓效应的驱动力,而天然强长程相互作用的形成为局部片段的天然结构提供主要基于熵效应的稳定性。在蛋白质进化早期,可能存在一个"石器时代",即依附不同界面(比如岩石)的限域作用而稳定的多肽片段先进化出来,后由这些片段逐步进化(包括拼合)而成蛋白质。  相似文献   

7.
蛋白质全新设计:八残基序列形成发夹结构的圆二色谱   总被引:1,自引:0,他引:1  
β-发夹是天然蛋白质中丰富的二级结构单元之一,在蛋白折叠和功能方面扮演着重要角色.文章报导了二条多肽序列(LTVd-PGLTV,n7和 LTVGDDTV, n5)的设计、合成和园二色谱研究结果.结果显示,n5在198 nm附近呈现负峰,表现为非规整结构特征;相反,n7表现为典型的发夹结构特征,在218 nm附近呈负峰,196 nm附近呈正峰,为β-转角与β-折叠的共同贡献.初步研究表明,β-转角、序列关系和氨基酸形成β-折叠结构倾向性是β-发夹结构形成和稳定的决定性因素.  相似文献   

8.
用"相对熵"作为优化函数,提出了一个有效快速的折叠预测优化算法.使用了非格点模型,预测只关心蛋白质主链的走向.其中只用到了蛋白质主链上的两两连续的Cα原子间的距离信息以及20种氨基酸的接触势的一个扩展形式.对几个真实蛋白质做了算法测试,预测的初始结构都为比较大的去折叠态,预测构象相对于它们天然结构的均方根偏差(RMSD)为5~7 A.从原理上讲,该方法是对能量优化的改进.  相似文献   

9.
二维蛋白质模型分子在折叠过程中的构象研究   总被引:2,自引:0,他引:2  
蛋白质在折叠过程中其构象要发生明显变化 .采用精确计数法 ,计算了在蛋白质折叠的不同阶段其尺寸大小及其分布情况 .发现在折叠的初期 ,分子的尺寸比较大 ,其分布也比较宽 .在折叠的后期 ,分子的尺寸比较小 ,其分布比较窄 .不同的氨基酸序列 ,其分子尺寸的分布也不同 .对于可折叠的氨基酸序列 ,在平均尺寸大小附近出现的几率特别大 .同时还计算了比值SN DN.这里SN 为可设计序列数目 (Thenumberofdesigningsequences) ,DN 为可设计构象数目 (Thenumberofdesignableconformations) ,并有关系- 1 6 8 4 +0 32 5 5N≤SN DN ≤- 0 86 6 4 +0 312 5N  (N ≥ 13)通过这些研究以提高对折叠过程的认识  相似文献   

10.
采用完全计数法,研究了二维紧密蛋白质链在不同HP序列时的构象性质,特别是具有唯一基态能量的折叠序列的性质.对于具有N个单体的紧密蛋白质链,发现有一定比例的序列为折叠序列.在这些折叠序列中,疏水基团(H)的数目比亲水基团(P)多20%,并同200种真实蛋白质分子的疏水基团和亲水基团的结果进行了比较.对于不同的折叠序列,根据序列中其疏水基团的数目,把具有相同疏水基团数目的序列归在同一类,发现这样的序列在总的序列中的相对含量满足高斯分布.同时还对序列中H(或者P)团族大小及其分别进行了研究,发现折叠序列与无规随机序列不同.还研究了不同折叠序列在不同链长时的比热情况,发现其相转变温度TC主要与链长有关,与折叠序列无关.  相似文献   

11.
De novo and inverse folding predictions of protein structure and dynamics   总被引:6,自引:0,他引:6  
Summary In the last two years, the use of simplified models has facilitated major progress in the globular protein folding problem, viz., the prediction of the three-dimensional (3D) structure of a globular protein from its amino acid sequence. A number of groups have addressed the inverse folding problem where one examines the compatibility of a given sequence with a given (and already determined) structure. A comparison of extant inverse protein-folding algorithms is presented, and methodologies for identifying sequences likely to adopt identical folding topologies, even when they lack sequence homology, are described. Extension to produce structural templates or fingerprints from idealized structures is discussed, and for eight-membered β-barrel proteins, it is shown that idealized fingerprints constructed from simple topology diagrams can correctly identify sequences having the appropriate topology. Furthermore, this inverse folding algorithm is generalized to predict elements of supersecondary structure including β-hairpins, helical hairpins and α/β/α fragments. Then, we describe a very high coordination number lattice model that can predict the 3D structure of a number of globular proteins de novo; i.e. using just the amino acid sequence. Applications to sequences designed by DeGrado and co-workers [Biophys. J., 61 (1992) A265] predict folding intermediates, native states and relative stabilities in accord with experiment. The methodology has also been applied to the four-helix bundle designed by Richardson and co-workers [Science, 249 (1990) 884] and a redesigned monomeric version of a naturally occurring four-helix dimer, rop. Based on comparison to the rop dimer, the simulations predict conformations with rms values of 3–4 ? from native. Furthermore, the de novo algorithms can asses the stability of the folds predicted from the inverse algorithm, while the inverse folding algorithms can assess the quality of the de novo models. Thus, the synergism of the de novo and inverse folding algorthhm approaches provides a set of complementary tools that will facilitate further progress on the protein-folding problem.  相似文献   

12.
Only a vanishingly small proportion of the almost infinite number of possible proteins occur in nature. Can this remaining potential of structural and functional diversity be used in the construction of new proteins? Is a “second evolution” of proteins and enzymes about to occur? These questions have suddenly become of interest because the recombinant DNA technique allows the synthesis of any given amino acid sequence. Examples of enzyme models demonstrate clearly that the unusual catalytic properties of enzymes are associated with the presence of a specifically folded polypeptide chain which has a complex three-dimensional form. The critical hurdle in the path of artificial proteins is thus the design of amino acid sequences which are able to fold into tertiary structures. — Recent studies on the topology and the mechanism of folding have provided considerable insight into the occurrence of, and the rules governing the three-dimensional architecture of proteins. Secondary structures apparently play a key role in the folding process; helices and “β-structures” act as nucleation centers directing folding and account for the surprisingly small number of different folding topologies. The problem of secondary structure formation can be investigated directly by means of conformational studies on model peptides. Oligopeptides with tailormade physicochemical, structural and conformational properties can already be designed. The theoretical and experimental basis for the construction of polypeptides with stable tertiary structures is therefore established. The path to macromolecules with an immense variety of novel properties lays before us.  相似文献   

13.
14.
Proteins carry out the most important and difficult tasks in all living organisms. To do so, they must often interact specifically with other small and large molecules. This requires that they fold to a globular conformation with a unique active site that is used for the specific interaction. Consequently, protein folding can be regarded as the “secret of life”. Biochemists and chemists have a great interest in elucidating the mechanism by which proteins fold and in predicting the folded conformation and its stability given just the amino acid sequence. This challenge is sometimes called the “protein folding problem”. The ability to construct proteins differing in sequence by one or more amino acids and to analyze their three-dimensional structures by X-ray crystallography and NMR spectroscopy is a powerful tool for investigating the conformational stability and folding of proteins. Several proteins are now under intensive study by this approach. One of these is ribonuclease T1.  相似文献   

15.
Certain model proteins dramatically fold and become more ordered on raising the temperature. When the temperature is raised to drive folding and assembly, these model proteins can lift weights and perform work; they can produce motion. The temperature of warm-blooded animals, however, is kept constant. Therefore, motion cannot result from a change in temperature. In this case, a free energy change, caused, for example, by an increase in the concentration of a chemical, can lower the temperature at which the protein folding and assembly transition occurs from above to below physiological temperature. Raising the concentration of a chemical isothermally has indeed been shown to result in motion and the efficient performance of work. These model proteins and the mechanism they reveal provide insight into the molecular basis for diverse biological functions; they are models for the molecular machines that comprise the living organism, and they provide a new class of materials for both medical and nonmedical applications.  相似文献   

16.
The design and characterization of a hydrophobic cavity in de novo designed proteins provides a wide range of information about the functions of de novo proteins. We designed a de novo tetrameric coiled‐coil protein with a hydrophobic pocketlike cavity. Tetrameric coiled coils with hydrophobic cavities have previously been reported. By replacing one Leu residue at the a position with Ala, hydrophobic cavities that did not flatten out due to loose peptide chains were reliably created. To perform a detailed examination of the ligand‐binding characteristics of the cavities, we originally designed two other coiled‐coil proteins: AM2, with eight Ala substitutions at the adjacent a and d positions at the center of a bundled structure, and AM2W, with one Trp and seven Ala substitutions at the same positions. To increase the association of the helical peptides, each helical peptide was connected with flexible linkers, which resulted in a single peptide chain. These proteins exhibited CD spectra corresponding to superhelical structures, despite weakened hydrophobic packing. AM2W exhibited binding affinity for size‐complementary organic compounds. The dissociation constants, Kd, of AM2W were 220 nM for adamantane, 81 μM for 1‐adamantanol, and 294 μM for 1‐adamantaneacetic acid, as measured by fluorescence titration analyses. Although it was contrary to expectations, AM2 did not exhibit any binding affinity, probably due to structural defects around the designed hydrophobic cavity. Interestingly, AM2W exhibited incremental structure stability through ligand binding. Plugging of structural defects with organic ligands would be expected to facilitate protein folding.  相似文献   

17.
Much is now known about how protein folding occurs, through the sequence analysis of proteins of known folding geometry and the sequence/structural analysis of proteins and their mutants. This has allowed not only the modification of natural proteins but also the construction of de novo polypeptides with predictable folding patterns. Structure/function analysis of natural proteins is used to construct derived versions that retain a degree of biological activity. The constructed versions made of either natural or artificial sequences contain critical residues for activity such as receptor binding. In some cases, the functionality is introduced by incorporating binding sites for other elements, such as organic cofactors or transition metals, into the protein scaffold. While these modified proteins can mimic the function of natural proteins, they can also be constructed to have novel activities. Recently engineered photoactive proteins are good examples of such systems in which a light-induced electron transfer can be established in normally light-insensitive proteins. The present review covers some aspects of protein design that have been used to investigate protein receptor binding, cofactor binding and biological electron transfer.  相似文献   

18.
Detection of foldable subunits in proteins is an important approach to understand their evolutions and find building motifs for de novo protein design. Using united-residue model, we simulated the folding of a six-helix protein with a length of 120 amino acids (C-terminal domain of Ku86). The folding behaviors, structural topology and sequence repetition of this protein all suggest that it may have a two-fold quasi-repetition or symmetry in its sequence and structure. Therefore, we simulated the folding of its two halves (1–60 and 61–120 amino acids) and find that they can fold into native conformations independently. It is also found that their folding behaviors are very similar to other three-helix bundles. This suggests that this protein may be divided into two foldable halves.  相似文献   

19.
The advent of a new class of force microscopes designed specifically to “pull” biomolecules has allowed non-specialists to use force microscopy as a tool to study single-molecule protein unfolding. This powerful new technique has the potential to explore regions of the protein energy landscape that are not accessible in conventional bulk studies. It has the added advantage of allowing direct comparison with single-molecule simulation experiments. However, as with any new technique, there is currently no well described consensus for carrying out these experiments. Adoption of standard schemes of data selection and analysis will facilitate comparison of data from different laboratories and on different proteins. In this review, some guidelines and principles, which have been adopted by our laboratories, are suggested. The issues associated with collecting sufficient high quality data and the analysis of those data are discussed. In single-molecule studies, there is an added complication since an element of judgement has to be applied in selecting data to analyse; we propose criteria to make this process more objective. The principal sources of error are identified and standardised methods of selecting and analysing the data are proposed. The errors associated with the kinetic parameters obtained from such experiments are evaluated. The information that can be obtained from dynamic force experiments is compared, both quantitatively and qualitatively to that derived from conventional protein folding studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号