首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
The alternating change of electron mobility values in the modulation doped InAlAs/InGaAs/InAlAs quantum well (QW) dependently on a thickness of the InAs layer inserted in the center of the QW is theoretically predicted and experimentally observed. The electron mobility enhancement by a factor of 1.5–2 takes place when the 4 nm-thick InAs layer is inserted into the 17 nm-width QW. The experimental maximal value of the electron drift velocity at the threshold electric field for intervalley electron scattering achieves (1.8?2)×107 cm/s and does not nearly depend on the thickness of the InAs insert. The high value of maximal drift velocity is conserved at the additional doping of the InAs insert up to electron density of 4×1012 cm?2 in the QW.  相似文献   

2.
We have investigated the performances of barristors with a graphene-tungsten disulfide (WS2) junction by varying the thickness of WS2 and gate oxide. On-current density (JON) and on- and off-current ratio (JON/JOFF) increases, and sub-threshold swing (VSS) decreases with the WS2 thickness. Also, barristors with thicker WS2 required less workfunction shift, to switch the barristors. Therefore, unlike the traditional devices, VSS of barristor with gate dielectric 300 nm was smaller than that of 90 nm, when the former is fabricated with thicker WS2 than the latter. Since materials properties of 2-dimensional semiconductors generally vary with their thickness, the thickness of 2D semiconductors could become a key parameter to engineer the performance of barristors with graphene and the 2D semiconductors.  相似文献   

3.
Sulfur dioxide (SO2) trace gas detection based on quartz-enhanced photoacoustic spectroscopy (QEPAS) using a continuous wave, distributed feedback quantum cascade laser operating at 7.24 μm was performed. Influence of water vapor addition on monitored QEPAS SO2 signal was also investigated. A normalized noise equivalent absorption coefficient of NNEA (1σ) = 1.21 × 10?8 cm?1 W Hz?1/2 was obtained for the ν 3 SO2 line centered at 1,380.93 cm?1 when the gas sample was moisturized with 2.3 % H2O. This corresponds to a minimum detection limit (1σ) of 63 parts per billion by volume for a 1 s lock-in time constant.  相似文献   

4.
Poly(vinyl butyral) (PVB) is of particular interest because of its low cost, extremely wide temperature work range (? 20 to 120 °C), and efficient chemical stability. In this study, a gel polymer electrolyte (GPE) containing Li+ ions was fabricated by using dimethylacetylamine (DMA), lithium perchlorate (LiClO4), and PVB. The experimental results indicated that a highly transparent GPE with a high ionic conductivity (σ) could be obtained by mixing glue (DMA with a PVB content of 10 wt%) with a LiClO4 content of 6 wt%. It was found that the ionic conductivity (σ) of the GPE depended on the LiClO4 content, and the GPE with a LiClO4 content of 6 wt% exhibited a maximum σ of 7.73 mS cm?1, a viscosity coefficient of 3360 mPa s, and a transmittance greater than 89% (visible region) at room temperature. Furthermore, PVB improved the electrolyte solution leakage, and the LiClO4 was used as an ion supply source for the high σ of the GPE.  相似文献   

5.
The structure of the Rh(111)-(2 × 2)-C2H3 overlayer that was obtained upon the adsorption of ethylene has been determined using a LEED intensity analysis. In agreement with a prior HREELS study, an ethylidyne (CCH3) species is found to stand perpendicularly above an hcp hollow site with a carbon-carbon distance of 1.45±0.10 Å and a metal-carbon distance of 2.03±0.07 Å. The Zanazzi-Jona and Pendry R-factors for this structure are 0.49 and 0.52, respectively. By comparison with similar organometallic complexes, the relatively short carbon-carbon distance and long metal-carbon distance can be explained by σ?π hyperconjugation of the surface ethylidyne fragment.  相似文献   

6.
Band structures of defective graphenes are analyzed by crystal orbital method. In laterally slipped faults, there appear σ bands consisting of weakly interacted dangling bonds. The peculiar σ bands cross with frontier π bands, and the resultant double occupation leads to the disappearance of ferromagnetic interactions. On the other hand, in longitudinally slipped faults, there are no crossings of the σ bands within the frontier levels, and the ferromagnetic interactions result from polycarbene-type spin alignment.  相似文献   

7.
The helicity components σ 1/2 and σ 3/2 of the cross section for double charged-pion production by real photons on a nucleon are calculated within a phenomenological approach developed previously. A high sensitivity of the σ 1/2σ 3/2 asymmetry to the contribution of nucleon resonances having strongly different electromagnetic helicity amplitudes A 1/2 and A 3/2 is demonstrated. This feature is of importance for seeking “missing” baryon states.  相似文献   

8.
We study energy exchange models with dissipation (λ) and noise (of amplitude σ) and show that in presence of a threshold these models undergo an absorbing phase transition when either dissipation or noise strength or both are varied. Using Monte Carlo simulations we find that the behaviour along the critical line, which separates the active phase from the absorbing one, belongs to directed percolation (DP) universality class. We claim that the conserved version with λ = 1 and σ = 0 also shows a DP transition; the apparent non-DP behaviour observed earlier is an artifact of undershooting in the decay of activity density starting from a random initial condition.  相似文献   

9.
Quartz-enhanced photoacoustic spectroscopy (QEPAS) is demonstrated for acetylene detection at atmospheric pressure and room temperature with a fiber-coupled distributed feedback (DFB) diode laser operating at ~1.53 μm. An efficient approach for gas concentration calibration is demonstrated. The effect of residual amplitude modulation on the performance of wavelength modulated QEPAS is investigated theoretically and experimentally. With optimized spectrophone parameters and modulation depth, a minimum detectable limit (1σ) of ~2 part-per-million volume (ppmv) was achieved with an 8.44-mW diode laser, which corresponds to a normalized noise equivalent coefficient (1σ) of 6.16 × 10?8 cm?1 W/Hz1/2.  相似文献   

10.
The sample of Mg0. 5+y (Zr1-y Fey) 2 (PO4) 3 (0.0 ≤y ≤0.5) was synthesized using the sol-gel method. The structures of the samples were investigated using X-ray diffraction and Fourier transform infrared spectroscopy measurement. XRD studies showed that samples had a monoclinic structure which was iso-structured with the parent compound, Mg0.5Zr (PO4) 3. The complex impedance spectroscopy was carried out in the frequency range 1–6 MHz and temperature range 303 to 773 K to study the electrical properties of the electrolytes. The substitutions of Fe3+ with Zr4+ in the Mg0.5Zr (PO4) 3 structure was introduced as an extrainterstitial Mg2+ ion in the modified structured. The compound of Mg0.5+y (Zr1-y Fey)2(PO4)3 with y?=?0.4 gives a maximum conductivity value of 1.25?×?10?5 S cm?1 at room temperature and 7.18?×?10?5 S cm?1 at 773 K. Charge carrier concentration, mobile ion concentration, and ion hopping rate are calculated by fitting the conductance spectra to power law variation, σ ac (ω)?=?σ o ? +?Aω α . The charge carrier concentration and mobile ion concentration increases with increase of Fe3+ inclusion. This implies the increase in conductivity of the compounds was due to extra interstitial Mg2+ ions.  相似文献   

11.
Recently, we reported a significant solvent effect on the phosphorus hyperfine coupling constant a P in β-phosphorylated 6-membered ring nitroxides (?a P = 24 G in Org. Biomol. Chem. 2015). Thus, it led us to investigate the effect of solvent for several 6-membered ring nitroxides. Although smaller than mentioned above, a change of 5–7 G in a P with the polarity of solvent was still observed for these nitroxides. As for other β-phosphorylated nitroxides, a N increases with the polarity/polarizability π* and the Hydrogen Bond Donating α properties of the solvent whereas a P exhibits the reverse trends. The change of a P with the solvent depends a lot on a subtle interplay between the destabilizing steric hindrance due to the bulkiness of the substituents and the stabilizing hyperconjugation interactions SOMO → σ*C–P between the anti-bonding orbitals of the C–P bond and the SOMO.  相似文献   

12.
A relationship between electrical conductivity (σ) and local structure of 15Li2O·10Fe2O3·xSnO2·(70–x)V2O5·5P2O5 glass (x = 0–20 mol%), abbreviated as xLFSVP glass, was investigated by 57Fe- and 119Sn-Mössbauer spectroscopies, differential thermal analysis (DTA) and dc-four probe method. A small increase in quadrupole splitting (Δ) for FeIII was observed from 0.70 to 0.74± 0.02 mm s???1 with an increase of “x”, whereas isomer shift (Δ) values of 0.40±0.01 mm s???1 were independent of “x”. This result suggests that local distortion of FeIIIO4 tetrahedra was slightly increased in SnO2-containing vanadate glasses, which was reflected as an increase in glass transition temperature (Tg) from 266 to 285±5 °C. A slope of 675 K / (mm s???1) obtained in ‘Tg vs. Δ plot’ proved that FeIII occupied the site of network former (NWF). An isothermal annealing of 10LFSVP glass at 500 °C for 100 min resulted in a marked decrease of Δ from 0.72 to 0.56±0.02 mm s???1, indicating that local distortion of FeO4 tetrahedra was reduced by the structural relaxation of 3D-network. In contrast, identical δ and Δ values of 0.07±0.01 and 0.53±0.02 mms???1, respectively, were observed in 119Sn-Mössbauer spectra of 10LFSVP glass before and after the annealing. These results indicate that SnIVO6 octahedra are loosely bound in the glass matrix as a network modifier (NWM). A marked increase in σ from 7.4 × 10???7 to 9.1 × 10???3 S cm???1 was observed in 20LFSVP glass after the isothermal annealing, indicating that structural relaxation of 3D-network evidently causes a marked increase in σ.  相似文献   

13.
The effect of GaAs(001) surface roughness on the magnetic properties of MBE-grown Fe films having a thickness t in the interval from 12 to 140 Å is investigated by the ferromagnetic resonance method. The films were deposited at room temperature with rates of 9 and 3 Å/min. For films grown on substrates with the rms deviation of the roughness σ≈10 and 30 Å, the spectrum is essentially dependent on the relationship between t and σ. At t≤σ and t≥3σ, a single absorption line is observed, whereas at σ≤t≤3σ, two absorption lines are present. These features of the spectra are related to the island growth of the films and the influence of roughness on island coalescence.  相似文献   

14.
During the final stages of polishing silicon wafers, much of the interactions between silicon and diamond abrasive takes place at the silicon asperities. These interactions, leading to material removal, were investigated in a MD simulation of polishing of a silicon wafer with a diamond abrasive under dry conditions. Simulations were conducted with silicon asperities of different geometries, different abrasive configurations, and polishing speeds. Under the conditions of polishing, the silicon atoms from the asperities were found to bond chemically to the surface of the diamond abrasive. Continued transverse motion of the diamond abrasive (relative to the silicon asperity) leads to tensile pulling, necking, and ultimate separation of the silicon asperity material instead of conventional material removal in polishing (chip formation) involving cutting/ploughing, which takes place in the absence of chemical bonding between the abrasive and the asperity material. This phenomenon has not been reported previously in the literature. The thrust and cutting forces initially increase due to the increase in the number of asperity atoms affected finally reaching a maximum. This is followed by a decrease of these forces due to tensile pulling and formation of individual strings followed by ultimate separation or breakage of the final string. The ratio of thrust force (F z ) to the cutting force (F x ), i.e. |(F z /F x )| was found to increase continuously to a maximum of ~0.8 followed by continuous decrease to ~0.25. This is in contrast to a more or less constant value of ~2 in the case of tools with rounded radii or tools with large negative rake angles, where material is removed in the form of chips ahead of the tool. Three regions of the asperity have been identified that are useful in the development of a phenomenological model for polishing that enables computation of material removal rates: (1) the region directly in front of the abrasive for which the probability of the removal of an asperity atom is close to unity, (2) the distant region where this probability is nearly zero, and (3) an intermediate region from which the probability of removal is close to half.  相似文献   

15.
In photosynthetic bacteria, light-induced electron transfer takes place in a protein called the reaction center (RC) leading to the reduction of a bound ubiquinone molecule, QB, coupled with proton binding from solution. We used electron paramagnetic resonance (EPR) and electron-nuclear double resonance (ENDOR) to study the magnetic properties of the protonated semiquinone, an intermediate proposed to play a role in proton coupled electron transfer to QB. To stabilize the protonated semiquinone state, we used a ubiquinone derivative, rhodoquinone, which as a semiquinone is more easily protonated than ubisemiquinone. To reduce this low-potential quinone we used mutant RCs modified to directly reduce the quinone in the QB site via B-branch electron transfer (Paddock et al. in Biochemistry 44:6920–6928, 2005). EPR and ENDOR signals were observed upon illumination of mutant RCs in the presence of rhodoquinone. The EPR signals had g values characteristic of rhodosemiquinone (g x  = 2.0057, g y  = 2.0048, g z  ~ 2.0018) at pH 9.5 and were changed at pH 4.5. The ENDOR spectrum showed couplings due to solvent exchangeable protons typical of hydrogen bonds similar to, but different from, those found for ubisemiquinone. This approach should be useful in future magnetic resonance studies of the protonated semiquinone.  相似文献   

16.
A carbon paste electrode modified with benzoylferrocene (BF) and carbon nanotubes (CNTs) have been applied to the electrocatalytic oxidation of homocysteine which reduced the overpotential by about 165 mV with an obvious increase in the current response. The transfer coefficient (α) for the electrocatalytic oxidation of homocysteine and diffusion coefficient of this substance under the experimental conditions were also investigated. In a phosphate buffer solution (PBS) of pH 7.0, the oxidation current increased linearly with two concentration intervals of homocysteine; one is 0.1 to 10.0 μM, and the other is 10.0 to 80.0 μM. The detection limit (3σ) obtained by square wave voltammetry (SWV) was 50.0 nM. The proposed method was successfully applied to the determination of homocysteine in real samples.  相似文献   

17.
This paper addresses novel applications of an excimer laser (308 nm wavelength, 20 ns pulse duration) in nanofabrication. Specifically, laser assisted nanoimprint lithography (LAN), self-perfection by liquefaction (SPEL), fabrication of metal nanoparticle arrays, and the fabrication of sub-10-nm nanofluidic channels are covered. In LAN, a polymeric resist is melted by the laser pulse, and then imprinted with a fused silica mold within 200 ns. LAN has been demonstrated in patterning various polymer nanostructures on different substrates with high fidelity and uniformity, and negligible heat effect on both the mold and the substrate. SPEL is a novel technology that uses selective melting to remove fabrication defects in nanostructures post fabrication. Depending on the boundary conditions, SPEL is categorized into three basic types: Open-SPEL that takes place with surface open, Capped-SPEL where a cap plate holds the top surface of the nanostructures and Guided-SPEL where a plate held a distance above the structure guides the molten materials to rise and form a new structure with better profile. Using SPEL (in less than 200 ns), we have achieved a reduction of line edge roughness (LER) of Cr lines to 1.5 nm (3σ) (560% improvement from the original), which is well below what the previous technologies permit, and a dramatic increase of the aspect ratio of a nanostructure. We have used SPEL to make sub-25-nm smooth cylindrical NIL pillar molds and smoothing Si waveguides. Excimer laser is also used to make metal nanoparticles. Monolayers of particles are fabricated on various substrates (silicon, fused silica and plastics) by exposing thin metal films to a single laser pulse. Periodic nanoparticle arrays have been fabricated by fragmentation of metal grating lines. The periodicity of these nanoparticles can be regulated by surface topography such as shallow trenches. Finally, an excimer laser pulse has been used to melt the top portion of 1D and 2D Si gratings to seal off the top surface, forming enclosed nanofluidic channel arrays. The channel width has been further reduced to 9 nm using self-limited thermal oxidation. DNA stretching using 20 nm wide self-sealed channels is also demonstrated.  相似文献   

18.
The dynamics and spectroscopic characteristics of the ultrafast photoinduced electron transfer (ET) of Rhodamine 6G (Rh6G+) in N,N-diethylaniline (DEA) were studied using femtosecond time-resolved multiplex transient grating and transient absorption spectroscopies. The ultrafast photoinduced forward ET from DEA to the Rh6G+* cation radical excited state has a time constant of τ FET = 219–318 fs. The much slower backward ET from the neutral radical Rh6G· to DEA+ with a time constant of τ BET = 22.76–42.31 ps occurs in the inverted region. Intramolecular vibrational relaxation of the excited state takes place in τ IVR = 2.18–6.91 ps.  相似文献   

19.
Under an aid of ultrasonic, tetraoxalyl ethylenediamine melamine resin-coated multiwalled carbon nanotubes were prepared for Ni(II) sensing in aqueous solution. The processes involved the fabrication of tetraoxalyl ethylenediamine melamine resin by one pot way, the coating of tetraoxalyl ethylenediamine melamine resin at multiwalled carbon nanotubes (MWCNTs), and the determination of Ni(II). The present materials were carefully examined by Fourier transform infrared spectroscopy, field emission scanning electron microscope, and electrochemistry techniques. A great deal of amorphous microsphere could be observed for tetraoxalyl ethylenediamine melamine resin with an average diameter of 1.2 μm, and MTE could evenly adhere at the surface of MWCNTs by the ultrasonic. Tetraoxalyl ethylenediamine melamine resin-coated multiwalled carbon nanotube-modified paraffin-impregnated graphite electrode was successfully used for the determination of Ni(II) by differential pulse adsorptive anodic stripping voltammetry. The current responses (?0.3 V) were linearly increased depending on the concentration from 1?×?10?11 to 3?×?10?10 M (i (μA)?=?11.1?+?7.9 c (1?×?10?12 M); R?=?0.9901, 3σ?=?7?×?10?12 M).  相似文献   

20.
In this paper, an ionic liquid 1-carboxyl-methyl-3-methylimidazolium tetrafluoroborate (CMMIMBF4)-functionalized Mg2Al layered double hydroxide (LDH) was synthesized and further used for the immobilization of myoglobin (Mb) on the surface of a carbon ionic liquid electrode to get a new electrochemical biosensor. Ultraviolet–visible and Fourier transform–infrared spectroscopies confirmed that Mb in the CMMIMBF4-LDH remained its native secondary structure, which was attributed to the biocompatibility of the materials used. On the cyclic voltammograms, a pair of well-defined redox peaks appeared, indicating that direct electron transfer of Mb was realized in the modified electrode. The formal peak potential was calculated as ?0.209 V (vs. SCE), which was the typical characteristics of the Mb heme Fe(III)/Fe(II) redox couples. The fabricated Mb sensor exhibited good electrocatalytic activity to the reduction of trichloroacetic acid in the range from 1.0 to 17.0 mmol L?1 with the detection limit as 0.344 mmol L?1 (3σ), and the apparent Michaelis–Menten constant was calculated as 13.5 mmol L?1. Thus, the ionic liquid-functionalized LDH exhibited the potential application in the electrochemical sensor for redox proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号