首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
李悦生 《高分子科学》2013,31(6):885-893
Vanadium(Ⅲ) complexes bearing thiophenol-phosphine ligands (2a-2b) (2-R-6-PPh2-C6H2S) VCl2(THF)2 (2a: R=H; 2b: R=Me3Si) were prepared from VCl3(THF)3 by treating with 1.0 equiv of the ligand in tetrahydrofuran in the presence of excess triethylamine. The two complexes were characterized by FTIR and mass spectra as well as elemental analyses. On activation with Et2AlCl, these complexes exhibited high catalytic activities (up to 22.1 kg PE/(mmolV·h·bar)) even at high temperature (70℃), and produced high molecular weight polymers with unimodal molecular weight distributions, indicating the polymerization took place in a single-site nature. This result may be attributed to benefits of introduction of second-row donor atoms for adjusting charge density of the vanadium centers. In addition, these complexes also exhibited high catalytic activities for ethylene/1-hexene copolymerization. Catalytic activity, comonomer incorporation and polymer molecular weight can be controlled in a wide range by the variation of catalyst structure and the reaction parameters such as Al/V molar ratio, comonomer feed concentration and polymerization reaction temperature.  相似文献   

2.
Half-sandwich zirconium complex 3 containing tridentate carborane [S,S,O] ligand 2 [(HOC6H2R2-4,6)(CH2)SC(B10H10) C(Ph)2P=S, R=tBu] was synthesized by the reaction of CpZrCl3(Cp=η5-C5H5) with sodium salt of ligand 2. Zirconium complex 3 was characterized by elemental and NMR analyses. DFT calculations were also performed on complex 3 to analyze the stereochemistry. The results from DFT calculations indicate that structure S1, in which no sulfur atom bonds to the zirconium atom, exists at the lowest energy level. In the presence of methylaluminoxane(MAO), complex 3 exhibited good catalytic activities for ethylene polymerization and long life-time up to 10 h. Moreover, the complex 3/MAO system displayed excellent catalytic activities toword ethylene copolymerization with 1-hexene or polar olefins.  相似文献   

3.
Half-titanocene complexes bearing dibenzhydryl-substituted aryloxide ligands(2a-2d) were prepared. Among them, 2c adopted a three-legged distorted tetrahedral geometry evidenced by X-ray crystallography. The poly-1,3-butadiene with high molecular weight and narrow molecular weight distribution was obtained by using these complexes as the catalysts activated with methylaluminoxane(MAO). The catalytic activities of the complexes depended on their structures. The Ti―O―C bond in the complexes with large angle afforded them with higher activity, while Cp*-based complexes exhibited lower activities than the Cp-based analogues. The activity of complex increased with increasing the polymerization temperature while the selectivity remained no change, indicating the high thermal stability. Furthermore, the polymerization of 1,3-butadiene catalyzed by 2a/MAO at 0 °C has been found in a living fashion.  相似文献   

4.
Wang  Kai-ti  Wang  Yong-xia  Wang  Bin  Li  Yan-guo  Li  Yue-sheng 《高分子科学》2017,35(9):1110-1121
Several novel mono( ?-enaminoketonato) vanadium complexes bearing constrained cyclic skeleton, including[(C6H5)C6H3C(O) = C(CH2)nCH = N ― Ar]VCl2(THF)2(V3a: n = 1, Ar = C6H5; V4a: n = 2, Ar = C6H5; V4b: n = 2, Ar =C6F5; V4c: n = 2, Ar =(C3H7)2C6H3; V5a: n = 3, Ar = C6H5), were synthesized and their structure and properties were characterized. The structures of V4 c and V5 a in solid-state were further confirmed by X-ray crystallographic analysis.Density functional theory(DFT) results indicated that these complexes showed enhanced steric hindrance around the metal center as compared with the acyclic analogues. Upon activation with Et2 Al Cl and in the presence of ethyl trichloroacetate as a reactivator, all of the complexes exhibited high catalytic activities(107 g PE/(mol V·h)) toward ethylene polymerization, and the obtained polymers exhibited unimodal distributions(Mw/Mn = 2.0-2.3) even produced at elevated temperatures(70-100 °C) and prolonged reaction time. When MAO was employed as a cocatalyst, they only showed moderate catalytic activities(105 g PE/(mol V·h)), but the resulting polymers had higher molecular weights(168-241 kg/mol). These vanadium complexes with cyclic skeleton also showed high catalytic activities toward ethylene/norbornene copolymerization. The produced copolymers displayed approximate alternating structure at high in-feed concentration of norbornene. The catalytic capabilities of these complexes could be tuned conveniently by varying ligand structure. Furthermore, the cyclic voltammetry results also proved that these complexes exhibited better redox stabilities than the complexes bearing linear skeleton.  相似文献   

5.
The reaction of bidentate N,N-dimethylaniline-arylamido ligands,o-C6H4NMe2(CH2NHAr)(Ar =Ph,1a;2,6-Me2C6H3,1b; 2,6-Et2C6H3,1c; 2,6-ipr2C6H3,1d) with ZnEt2 yields the complexes o-C6H4(NMe2)(CH2NAr)ZnEt (2a-2d),respectively.All the complexes were characterized by 1H and 13C NMR spectroscopy and elemental analyses.It was found that all the zinc complexes were efficient catalysts for the ring-opening polymerization of L-lactide in the presence of benzyl alcohol with good molecular weight control and narrow polydispersity.  相似文献   

6.
Totally sixteen new titanium and zirconium non-Cp complexes supported by Schiff-base, or thiophene diamide ligands have been synthesized. The complexes are obtained by the reaction of M(OPr-i)4(M=Ti,Zr) with the corresponding Schiff-base ligand in 1:1 molar ratio in good yield. The thiophene diamide titanium complex has been prepared from trimethylsilyl amine [N,S,N] ligand and TiCl4 in toluene at 120℃. All complexes are well charac-terized by ^1H NMR, IR, MS and elemental analysis. When activated by excess methylaluminoxane (MAO), complexes show moderate catalytic activity for ethylene polymerization, and complex If (R^1=CH3,R^2=Br) exhibits the highest activity for ethylene and styrene polymerization. When the complexes were preactivated by triethylaluminum (TEA), both polymerization activities and syndiotacticity of the polymers were greatly improved.  相似文献   

7.
金国新 《高分子科学》2013,31(5):760-768
A series of half-sandwich group IV metal complexes with tridentate monoanionic phenoxy-imine arylsulfide [O NS] ligand [2-Bu t 4-Me-6-((2-(SC 6 H 5)C 6 H 4 N = CHC 6 H 2 O)](La) and dianionic phenoxy-amine arylsulfide [O N S] ligand [2-Bu t 4-Me-6-((2-(SC 6 H 5)C 6 H 4 N-CH 2 C 6 H 2 O)] 2(Lb) have been synthesized and characterized.Lb was obtained easily in high yield by reduction of ligand La with excess LiAlH 4 in cool diethyl ether.Half-sandwich Group IV metal complexes CpTi[O NS]Cl 2(1a),CpZr[O NS]Cl 2(1b),CpTi[O N S]Cl(2a),CpZr[O N S]Cl(2b) and Cp * Zr[O N S]Cl(2c) were synthesized by the reactions of La and Lb with CpTiCl 3,CpZrCl 3 and Cp * ZrCl 3,and characterized by IR,1 H-NMR,13 C-NMR and elemental analysis.In addition,an X-ray structure analysis was performed on ligand Lb.The title Group IV half-sandwich bearing tridentate [O,N,S] ligands show good catalytic activities for ethylene polymerization in the presence of methylaluminoxane(MAO) as co-catalyst up to 1.58 × 10 7 g-PE.mol-Zr 1.h 1.The good catalytic activities can be maintained even at high temperatures such as 100 ℃ exhibiting the excellent thermal stability for these half-sandwich metal pre-catalysts.  相似文献   

8.
Distribution of active centers(ACD)of ethylene or 1-hexene homopolymerization and ethylene-1-hexene copolymerization with a MgCl_2/TiCl_4 type Z-N catalyst were studied by deconvolution of the polymer molecular weight distribution into multiple Flory components.Each Flory component is thought to be formed by a certain type of active center. ACD of ethylene-1-hexene copolymer with very low 1-hexene incorporation was compared with that of ethylene homopolymer to see the effect of introducingα-olefin on eth...  相似文献   

9.
范宏 《高分子科学》2014,32(7):854-863
This contribution reports ethylene polymerization behavior of titanium complexes incorporating bis(phenoxyimine) ligands. Six phenoxy-imine Ti(IV) complexes {6-R1-2-[CH=N(2,6-difluoro-3,5-diR2-4-R3Ph)]C6H3O}2TiCl2(1: R1 = H, R2 = H, R3 = H; 2: R1 = H, R2 = H, R3 = 4-vinylphenyl; 3: R1 = CH3, R2 = H, R3 = H; 4: R1 = CH3, R2 = H, R3 = 4-vinylphenyl; 5: R1 = CH3, R2 = F, R3 = H; 6: R1 = CH3, R2 = F, R3 = 4-vinylphenyl) have been synthesized and evaluated for ethylene polymerization using dried MAO(simplified as DMAO) as cocatalyst. An obvious catalytic heterogeneity of Cat 2(Complex 2/DMAO) towards ethylene polymerization was observed, which was illustrated by decreased activity, multimodal molecular weight distribution and partially improved particle morphology comparing with Cat 1. Moreover, Cat 3 exhibits "living" characteristics in the process under certain conditions(25 °C, less than 20 min). Otherwise, the moderate to high ethylene polymerization activity of ca. 105-106 g PE/(mol Ti·h) and high molecular weight(Mw = 105-106) of polyethylene can be obtained by changing the skeleton structure of these complexes.  相似文献   

10.
The efficient copolymerization of olefin with polar monomers using nickel-based catalysts presents a longstanding challenge. In this contribution, three phosphine-benzocyclone ligands and corresponding neutral nickel catalysts(Ni1: Ar = Ph; Ni2: Ar = 2-(C6H5)C6H4; Ni3: Ar = 2-[2’,6’-(Me O)2-C6H3]C6H4) were prepared and applied for the ethylene polymerization and copolymerization with polar monomers without any cocatalyst. The bulky substituent groups in complexes Ni2 and Ni3 contributed to high ...  相似文献   

11.
Reductive dehalogenation of the (chloro)(phenylethynyl)phosphine (2,4,6-tBu3C6H2O)(PhCC)PCl, I, by Co2(CO)8, II, yields the neutral phosphenium ion complex [(R)(R′)]P=Co(CO)3, III, (R = 2,4,6-tBu3C6H2O; R′ = (η2-C≡CPh)Co2(CO)6), which contains a trigonally planar coordinated phosphorus atom. When NaCo(CO)4, V, is used instead of II a dinuclear complex, Co2(CO)62-P(R)(R′)]2, VI, (R = 2,4,6-tBu3C6H2O; R′ = C≡CPh) is formed in which the phosphido ligands P(R)(R′), bridge in a μ2 fashion two Co(CO)3 units. The mechanism of formation of VI, involving a formal dimerization of two [(2,4,6-tBu3C6H2O)(PhC≡C)]P=Co(CO)3 fragments, is discussed. However, (tBu)(PhC≡C)PCl, VII, reacts with II, to yield the cluster compound VIII, containing the two μ2-bridging units (tBu)[(η2-C≡CPh)Co2(CO)5]P and (tBu)(PhC≡C)P.

Compounds II and VI–VIII were identified from their analytical and spectroscopic (IR, 1H-, 13C- and 31P-NMR) data. The molecular structure of the cluster compound VIII was determined by an X-ray diffraction study.  相似文献   


12.
Regioselective addition of chalcogenol to an ν3-propargyl complex Pt(PPh3)23-C3H3)](BF4) (2) via the formation of the C---O, C---S, or C---Se bond generates new cationic chalcogenoxyallyl species {Pt(PPh3)23CH2C(ER)CH2]}(BF4) (E = O, R = Me 4(a), Et (4b, iPr (4c), 1Bu (4d), Ph (4e); E=S, E=Et (5b), tBu (5d, Ph (5e); E=Se, R=Ph (6e )) respectively in good yields. Thiol and selenol react with complex 2 much faster than alcohol; and 2 reacts with p-(HO)C6H4(SH) to exclusively yield the thioxyallyl product {Pt(PPh3)23-CH2C(SC6H4OH)CH2]}(BF4) (5f). Among the alcoh and phenol, thereactivity follows the order MeOH > EtOH >, iPrOH >, tBuOH > PhOH. A mechanism comprising a preceding coordination step is postulated. The X-ray structures of 4b, 4e, 5b, 5e and 6e are provided.  相似文献   

13.
The novel alkynyldithiocarboxylate complexes [Fe(η5-C5H5)(S2CCCR) (dppm-P)] (3a,b) and [Fe(η5-C5H5)(S2CCCR)(PPh3)] (4a,b) were obtained through the insertion of CS2 into the iron-akynyl bond in the complexes [Fe(η5-C5H5)(CCR)(L)(L′] L, L′ = dppm R = Ph (1a), tBu(1b); L = (CO), L′ = (PPh3) R = Ph (2a), tBu (2b). Variable-temperature 31P{1H} NMR studies indicate the presence of two different isomers, [Fe(η5-C5H5)(η3-S,C,S′---S2CCCR)(L)(L′)] and [Fe(η5-C5H52-S,S′-S2CCCR)(L)(L′)], which rapidly interconvert at room temperature. The synthesis of the precursor complex [Fe(η5-C5H5)(CCtBu)(CO)(PPh3)] is also described.  相似文献   

14.
Recent results (post-1990) on the synthesis and structures of bis(trimethylsilyl)methyls M(CHR2)m (R = SiMe3) of metals and metalloids M are described, including those of the crystalline lipophilic [Na(μ-CHR2)], [Rb(μ-CHR2)(PMDETA)]2, K4(CHR2)4(PMDETA)2, [Mg(CHR2)(μ-CHR2)], P(CHR2)2 (gaseous) and P2(CHR2)4, [Yb(CHR2)2(OEt2)2] and [{Yb(CR3)(μ-OEt)(OEt2)}2]; earlier information on other M(CHR2)m complexes and some of their adducts is tabulated. Treatment of M(CHR2) (M = Li or K) with four different nitriles gave the X-ray-characterized azaallyls or β-diketinimates , and (LL′ = N(R)C(tBu)CHR, L′L′ = N(R)C(Ph)C(H)C(Ph)NR, LL″ = N(R)C(Ph)NC(H)C(Ph)CHR, R = SiMe3 and Ar = C6H3Me2-2,5). The two lithium reagents were convenient sources of other metal azaallyls or β-diketinimates, including those of K, Co(II), Zr(IV), Sn(IV), Yb(II), Hf(IV) and U(VI)/U(III). Complexes having one or more of the bulky ligands [LL′], [L′L′], [LL], [LL″], [L″L], [LL] and [{N(R)C(tBu)CH}2C6H4-2]2− are described and characterized (LL = N(H)C(Ph)C(H)C(Ph)NH, L″L = N(R)C(tBu)C(H)C(Ph)NR, LL = N(R)C(tBu)CHPh). Among the features of interest are (i) the contrasting tetrahedral or square-planar geometry for and , respectively, and (ii) olefin-polymerization catalytic activity of some of the zirconium(IV) chlorides.  相似文献   

15.
四甲基二硅桥连取代环戊二烯基配体相继与丁基锂及MCl4·2THF作用,生成四甲基二硅桥连取代环戊二烯基钛和锆化合物(Me2SiSiMe2)(C5H4R)(C5H4R')MCl2[R=H,R'=t-Bu,M=Ti(1),Zr(2),Hf(3);R=H,R'=Me,M=Ti(4);R=R'=Me,M=Ti(5),Zr(6)].通过元素分析、MS和1HNMR谱表征了化合物的分子结构,并通过X射线衍射分析测定了化合物1的晶体结构.研究了在甲基铝氧烷(MAO)的助催化下,化合物1-3和6对乙烯聚合的催化性能。  相似文献   

16.
四甲基二硅氧桥连不对称环戊二烯基及茚基配体C5H5Me2SiOSiMe2Cp′H相继与丁基锂及MCl4·2THF作用,生成四甲基二硅氧桥连不对称茂金属化合物(Me2SiOSiMe2)(C5H4)(Cp′)MCl2[Cp′=C5H3But,M=Ti(1),Zr(2);Cp′=C9H6,M=Ti(3),Zr(4)].通过元素分析、MS和1H NMR谱表征了化合物的分子结构,并通过X射线衍射分析测定了化合物1的晶体结构.研究了在MAO(甲基铝氧烷)的助催化下,化合物1~4对乙烯聚合的催化性能.  相似文献   

17.
The directed oligomerization of propene and 1-hexene was carried out with a series of Cp′(C5H5)ZrCl2 and Cp2′ZrCl2 pre-catalysts (Cp′=C5HMe4, C4Me4P, C5Me5, C5H4tBu, C5H3-1,3-tBu2, C5H2-1,2,4-tBu3) together with (C5H5)2ZrCl2. Oligomers in the molar mass range 300–1500 g/mol for propene and 200–3000 g/mol for 1-hexene were synthesized at 50 °C. The majority of oligomer molecules contain a double-bond end group. Oligomer characterization was carried out by gel permeation chromatography (GPC), 1H and 13C NMR. Vinylidene double bonds (from β-hydrogen elimination) are solely found for the tert-butyl-substituted zirconocenes and for most of the unsymmetrical methyl-substituted Cp′(C5H5)ZrCl2 systems (except Cp′=phospholyl). With (C4Me4P)(C5H5)ZrCl2 and with the symmetrical methyl-containing Cp2′ZrCl2 pre-catalysts, also vinyl end groups (from β-methyl elimination) are observed in the case of oligopropenes. The vinylidene/vinyl ratio depends on the ligand and the vinyl content increases from C5HMe4 (65/35) over C4Me4P (61/39) to C5Me5 (9/91). The phospholyl zirconocenes and (C5HMe4)2ZrCl2 also exhibit chain-transfer to aluminum thereby giving saturated oligomers.  相似文献   

18.
硅桥连双(三甲硅基环戊二烯基)双锂盐与TiCl4·2THF反应,生成相应的钛化合物[E(C5H3SiMe3)2]TiCl2[E=Me2SiSiMe2(3),Me2SiOSiMe2(5)],同时还分离到了脱一个三甲硅基的产物[E(C5H4)(C5H3SiMe3)]TiCl2[E=Me2SiSiMe2(4),Me2SiOSiMe2(6)].其中四甲基二硅氧桥连配体更容易发生这种脱硅基反应.通过元素分析、MS和1HNMR谱表征了化合物3-6的分子结构.  相似文献   

19.
Two organogold derivatives of diphenylmethane and diphenylethane, Ph3PAu(o-C6H4)CH2(C6H4-o)AuPPh3 (1) and Ph3PAu(o-C6H4)(CH2)2(C6H4-o)AuPPh3 (2), have been synthesized by the reaction of ClAuPPh3 with Li(o-C6H4)CH2(C6H4-o)Li and Li(o-C6H4)(CH2)2(C6H4-o)Li respectively. The interaction of 1 with dppe results in the replacement of the two PPh3 groups to give a macrocyclic compound (3) that includes an Au Au bond. Compounds 1 and 2 react with one or two equivalents of [Ph3PAu]BF4 to form new types of cationic complex [CH2(C6H4-o)2(AuPPh3)3]BF4 (4), [CH2(C6H4-o)2(AuPPh3)4](BF4)2 (5), and [(CH2)2(C6H4-o)2(AuPPh3)4](BF4)2 (6). Complexes 1–6 have been characterized by X-ray diffraction studies, FAB MS, and IR as well as by 1H and 31P NMR spectroscopy. A complicated system of Au H-C agostic interactions, involving the bridging alkyl groups (—CH2— and CH2-CH2—) of diphenylmethane and diphenylethane ligands, has been found to occur in complexes 1–3 and 6.  相似文献   

20.
CpCo(CO)2 is oxidised by [Cp2Fe]BF4 (Cp = C5H5) in the presence of neutral ligands L to give the dications [CpCoL3]2+ (L = SMe2, S(n-C4H9)2, PMe3, C5H5N, MeCN; Me = CH3). In [CpCo(SMe2)3]2+, sulfane ligands are substituted by neutral ligands L, L---L and L---L---L, to give the complexes [CpCoL3]2+ (L = SeMe2, TeMe2, PMe3, P(OMe)3, AsMe3, SbMe3, t-C4H9NC, C5H5N, MeCN), [Cp-Co(L---L)SMe2]2+ (L---L = R2P(CH2)nPR2, n = 1, 2, R = C6H5; bipyridine, o-phenanthroline, neocuproin) and [CpCo(L---L---L)]2+ (L---L---L = RP(CH2CH2PR2)2, R = C6H5). The dications react with iodide resulting in the monocations [CpCoL2I]+ and [CpCo(L---L)I]+. Azacobaltocinium cations [CpCo(C4R2H2N)]+ (R = H, CH3) are obtained by reaction of [CpCo(SMe2)3]2+ with metal pyrrolides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号