首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A composite of oxygen ion conducting oxide Ce0.8Sm0.2O2−δ (60 vol.%) and electron conducting oxide La0.8Sr0.2CrO3−δ was prepared by sintering a powder compact at a temperature of 1550 °C. No significant reaction between the two constituent oxides was observed under preparation and oxygen permeation conditions. Appreciable oxygen permeation fluxes through the composite membrane were measured at elevated temperatures with one side of it exposed to the ambient air and the other side to a flowing helium gas stream. The oxygen flux initially increased with time, and took a long time to reach a steady value. A steady oxygen permeation flux as high as 1.4 × 10−7 mol cm−2 s−1 was obtained with a 0.3 mm thick membrane at 950 °C under a relatively small oxygen partial pressure difference of 0.21 bar/0.0092 bar. It was revealed that the overall oxygen permeation process was mainly limited by the transport in the bulk of the membrane in the range of the membrane thickness greater than 1.0 mm, and the limitation by the surface oxygen exchange came into play at reduced thickness of 0.6 mm.  相似文献   

2.
The samples of La0.4Sr0.6Co1−yFeyO3−δ (y = 0.2 and 0.4) were prepared using both conventional ceramic technique and nitrate–citrate precursors technique. The phase identification was made by X-ray diffraction method. The refinement of structural parameters from the XRD and neutron diffraction measurements was performed by full profile Rietveld analysis. Neutron diffraction showed that both samples possess distorted perovskite-type structure. Oxygen nonstoichiometry was measured by chemical analysis and thermogravimetry (TG) analysis in the range 20 ≤ T/°C ≤ 900 and 2E-5 ≤ pO2/atm ≤ 4E-1. TG-experiments indicate a relatively fast and reversible oxygen exchange at pO2 > 1E-2 atm. Mass saturation occurs at T < 300 °C upon cooling. The absolute value of oxygen nonstoichiometry was determined by iodometric titration measurements. It was found that both samples have practically stoichiometric composition at 300 °C in air and δ increases with increasing temperature and decreasing oxygen partial pressure.  相似文献   

3.
In this article, the phase compositions, thermal, mechanical and transport properties of both the SrCo0.8Fe0.2O3−δ (SCF) and the SrCo0.8Fe0.1Sn0.1O3−δ (SSCF) ceramic membranes were investigated systematically. As compared with the SCF membrane, the SSCF one had a more promoted thermal shock resistance, which related to its small thermal expansion coefficient between them and an enhanced composite structure for it. For the SCF membrane, a permeation rate of 1.9 × 10−6 mol cm−2 s−1 was obtained at 1000 °C and under the oxygen partial pressure gradient of PO2 (h)/PO2 (l) = 0.209 atm/0.012 atm; however, the permeation rate was 2.5 × 10−6 mol cm−2 s−1 for the SSCF one in the same measuring condition. In addition, both peak values of total electrical conductivity (σe) for SSCF sample appeared with increasing temperature. The second peak value of σe for SSCF one was regarded as the contribution from its minor phase, which appeared with the mixed conducting behavior resulting from partly Co-dissolving into its lattice.  相似文献   

4.
The oxygen separation membrane having perovskite structure for the partial oxidation of methane to synthesis gas was prepared. La0.7Sr0.3Ga0.6Fe0.4O3−δ (LSGF) perovskite membrane coated with La0.6Sr0.4CoO3−δ (LSC) (M1), and the one side of M1 membrane coated with NiO (M2) was prepared to examine the partial oxidation of methane. The single oxygen permeations of the LSC + LSGF (M1) membrane and NiO coated membrane (M2) were measured. The oxygen permeation flux in M1 membrane was higher than that of M1 membrane at 850 °C.

The partial oxidation experiment of methane using the prepared membranes was examined at 850 °C. The value of CH4 conversion and CO selectivity of M2 membrane was higher than that of M1 membrane.

NiO/NiAl2O4 catalyst was used to improve the methane conversion, and the partial oxidation experiment of methane with M1 membrane was examined at 850 °C. The CH4 conversion was 88%, and CO selectivity was 100%.  相似文献   


5.
The oxygen permeation properties of mixed-conducting ceramics SrFeCo0.5O3−δ (SFCO), Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCFO), La0.2Sr0.8Co0.8Fe0.2O3−δ (LSCFO) and Ba0.95Ca0.05Co0.8Fe0.2O3−δ (BCCFO) were studied by thermogravimetric method in the temperature range 600–900 °C. The results show that the oxygen adsorption rate constants ka of all material are larger than oxygen desorption rate constants kd and both ka and kd are not strongly dependent on temperature in the studied temperature range. The oxygen vacancy contents δ(N2) and δ(O2) in nitrogen and oxygen and their difference Δδ = δ(N2) − δ(O2) play an important role in determining the temperature behavior of oxygen permeation flux JO2.  相似文献   

6.
Phase equilibria in the LaFeO3–“LaNiO3” were studied at 1100 °C in air. The samples were synthesized by standard ceramic and/or solution route via nitrate or citrate precursors. According to the results of XRD it was found that the homogeneity ranges of LaFe1−xNixO3−δ solid solution lay within 0.0 ≤ x ≤ 0.4 (sp.gr. Pbnm) and 0.6 ≤ x ≤ 0.8 (sp.gr. ). The structural parameters (bond lengths, atom coordinates) for the single-phase samples were refined using Rietveld analysis. The unit cell parameters versus LaFe1−xNixO3−δ composition are presented.  相似文献   

7.
Dense tubular Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCFO) membranes were successfully prepared by the plastic extrusion method. The oxygen permeation flux was determined at different oxygen partial pressures in the shell side and different temperatures between 700 and 900 °C. The oxygen vacancy diffusion coefficients (Dv) at different temperatures were calculated from the dependence of oxygen permeation flux on the oxygen partial pressure term based on the surface current exchange model. No unsteady-state of oxygen permeation flux was observed at the initial stage in our experiments. The reason is the equilibrium time is too short (less than 10 min) to observe the unsteady-state in time. The increase of the helium flow rate can increase the oxygen permeation flux, which is due to the decrease of the oxygen partial pressure in the tube side with increasing of the helium flow rate. The oxygen permeation flux can also be affected by the air flow rate in the shell side when the air flow rate is lower than 150 ml/min. But the oxygen permeation flux is insensitive to the air flow rate when the air flow is higher than 150 ml/min. The membrane tube was operated steadily for 150 h with oxygen permeation flux of 1.12 ml/(cm2 min) at 875 °C. X-ray diffraction (XRD) and energy dispersive spectroscopy (EDS) analysis showed that both the surface exposed to air and the surface exposed to helium of the BSCFO membrane tube after permeation for 150 h are similar to the fresh membrane tube in composition and structure. These results indicated that the membrane tube exhibits high structure stability.  相似文献   

8.
Since the discovery of superconductivity in Sr2CuO2F2+δ there has been an increased interest in ternary oxide-fluorides. Sr2CuO2F2+δ is prepared via low temperature (T = 220 °C) reaction routes. Low temperature fluorination induces an interesting structural rearrangement in the parent compound Sr2CuO3, which is a one-dimensional material containing linear chains of vertex sharing CuO4 squares along the crystallographic b axis. Upon fluorination, one oxide is substituted by two fluorides and Cu2+ becomes octahedrally coordinated by four oxides and two fluorides. The fluorinated compound Sr2CuO2F2+δ displays the T-type structure (La2CuO4). Insertion of excess fluorine, δ, also takes place and this fluorine occupies interstitial sites in the T structure. Although the starting material Ca2CuO3 is isostructural to Sr2CuO3, Ca2CuO2F2+δ displays the T′ (Nd2CuO4) structure due to the smaller radius of Ca2+ compared to that of Sr2+.

The alkaline-earth palladates with the general formula A2PdO3 (A = Ba, Sr) are isostructural with the A2CuO3(A = Ca, Sr) materials. We prepared the Ba2xSrxPdO3 (x = 0–2) series and performed low temperature fluorination, which led to the synthesis of the series Ba2xSrxPdO2F2+δ (0 ≤ x ≤ 1.5). All the compounds in the Ba2xSrxPdO2F2+δ series show T′ structure (Ca2CuO2F2+δ). Similarities and differences with Sr2CuO2F2+δ and Ca2CuO2F2+δ will be discussed.  相似文献   


9.
CrOx/La2O3 mixed oxides, prepared by impregnating La2O3 with appropriate aqueous solutions of (NH4)2CrO4 and calcining at 600 °C for 4 h, have been investigated by means of XRD, TPR, XPS, DRIFTS, and Raman spectroscopy (RS). The formation of the compounds La2CrO6, La(OH)CrO4 and LaCrO4 under these conditions was evidenced. Strong peaks at 864, 884, 913, and 921 cm−1, as well as weak peaks at 136, 180, 354, 370, and 388 cm−1 in the RS spectrum of CrOx/La2O3 have been assigned to La2CrO6.  相似文献   

10.
A series of CexPr1−xO2−δ mixed oxides were synthesized by a sol–gel method and characterized by Raman, XRD and TPR techniques. The oxidation activity for CO, CH3OH and CH4 on these mixed oxides was investigated. When the value x was changed from 1.0 to 0.8, only a cubic phase CeO2 was observed. The samples were greatly crystallized in the range of the value x from 0.99 to 0.80, which is due to the formation of solid solutions caused by the complete insertion of Pr into the CeO2 crystal lattices. Raman bands at 465 and 1150 cm−1 in CexPr1−xO2−δ samples are attributed to the Raman active F2g mode of CeO2. The broad band at around 570 cm−1 in the region of 0.3 ≤ x ≤ 0.99 can be linked to oxygen vacancies. The new band at 195 cm−1 may be ascribed to the asymmetric vibration caused by the formation of oxygen vacancies. The TPR profile of Pr6O11 shows two reduction peaks and the reduction process is followed: . The reduction temperature of CexPr1−xO2−δ mixed oxides is lower than those of Pr6O11 or CeO2. TPR results indicate that CexPr1−xO2−δ mixed oxides have higher redox properties because of the formation of CexPr1−xO2−δ solid solutions. The presence of the oxygen vacancies favors CO and CH3OH oxidation, while the activity of CH4 oxidation is mostly related to reduction temperatures and redox properties.  相似文献   

11.
A configuration of dense mixed ionic and electronic conducting (MIEC) membrane with layered morphological structure for oxygen separation, which combines the benefits of high oxygen permeation flux of cobalt-based membrane, high chemical stability of iron-based perovskite and high mechanical strength of thick membrane, was studied. The membrane is normally composed of two layers; each layer is a dense MIEC oxide. The substrate layer is a thick dense membrane with high oxygen permeability but relatively lower chemical stability. The feasibility of dense thick Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCF5582) membrane as the substrate layer and Ba0.5Sr0.5Co0.2Fe0.8O3−δ (BSCF5528) as the thin-film layer was mainly experimentally investigated. Both the BSCF5582 and the BSCF5528 show the same cubic perovskite structure and the similar lattice constant with no detrimental reaction products formed. By optimizing fabrication parameters of a simple dry pressing process, dual-layered membrane, free of cracks, was successfully fabricated. The oxygen permeation flux of a dual-layered membrane with the thin-film BSCF5528 layer facing to the sweep gas reached 2.1 mL cm−2 min−1 [STP] (1.56 × 10−6 mol cm−2 s−1) at 900 °C, which is about 3.5 times higher than that of the BSCF5528 membrane (0.6 mL cm−2 min−1, [STP] (4.46 × 10−7 mol cm−2 s−1) under the same conditions.  相似文献   

12.
采用逐层负载-孔道内氨/水蒸气原位羟化法制备了一系列负载型钙钛矿La0.8Sr0.2MnO3/SBA-15催化剂,用XRD、BET、TG-DTG、XPS、H2-TPR等手段对催化剂的物性结构等进行了表征,并在常压连续流动固定床反应器上评价了该催化剂对甲苯催化燃烧的催化性能。结果表明,逐层负载-孔道内氨/水蒸气原位羟化法的使用有助于活性组分La0.8Sr0.2MnO3进入SBA-15的孔道,并在SBA-15上形成钙钛矿结构。La0.8Sr0.2MnO3/SBA-15上钙钛矿结构的形成和晶格氧的出现,可为催化剂提供较多的活性中心,有利于其催化燃烧甲苯的活性。  相似文献   

13.
Physico-chemical properties of the binary system NaHSO4–KHSO4 were studied by calorimetry and conductivity. The enthalpy of mixing has been measured at 505 K in the full composition range and the phase diagram calculated. The phase diagram has also been constructed from phase transition temperatures obtained by conductivity for 10 different compositions and by differential thermal analysis. The phase diagram is of the simple eutectic type, where the eutectic is found to have the composition X(KHSO4) = 0.44 (melting point ≈ 406 K). The conductivities in the liquid region have been fitted to polynomials of the form κ(X) = A(X) + B(X)(T − Tm) + C(X)(T − Tm)2, where Tm is the intermediate temperature of the measured temperature range and X, the mole fraction of KHSO4. The possible role of this binary system as a catalyst solvent is also discussed.  相似文献   

14.
We performed a study on the dielectric properties of BaxSr1−xTiO3–Mg0.9Zn0.1O (BST–MZO) composite ceramics derived from core–shell structured nanopowders with the shell of zinc doped MgO and core of BaxSr1−xTiO3. It was found that the ceramics exhibit a significant improvement in dielectric response under a DC electric field. The Curie temperature decreases more significantly in the BST–MZO composite ceramics compared to that of pure BST ceramics. The tunability of Ba0.75Sr0.25TiO3–40%MZO is 23.49% at 20 °C. The dielectric properties at high frequency also show low dielectric constant and great reduction in dielectric loss. These ceramics are expected to be useful in microwave devices.  相似文献   

15.
Irena Szczygiel   《Thermochimica Acta》2001,370(1-2):125-128
The phase diagram of the system CePO4–K3PO4 has been determined based on investigations by differential thermal analysis, X-ray powder diffraction, IR spectroscopy and optical microscopy. The system contains only one intermediate compound K3Ce(PO4)2, which melts incongruently at (1500±20)°C. This compound is stable down to room temperature and exhibits a polymorphic transition at 1180°C. It was confirmed that the low-temperature form β-K3Ce(PO4)2 crystallizes in a monoclinic system, space group P21/m with unit cell parameters a=9.579 (5), b=5.634 (6), c=7.468 (5) Å; =γ=90°, β=90.81 (3)°; V=403.083 Å3.  相似文献   

16.
In this communication, we report on the synthesis and characterization of a series of compounds with the general composition Ce1−xSrxO2−x (0.0≤x≤1.0), to establish a detailed phase relation in the CeO2–SrO system. The X-ray diffraction (XRD) pattern of the each product was refined to determine the solid solubility and the homogeneity range. The solid solubility limit of SrO in CeO2 lattice, under the slow cooled conditions, is represented as Ce0.91Sr0.09O1.91 (i.e. 9 mol% of SrO). A careful delineation of the phase boundary revealed that the stoichiometric SrCeO3, in fact, contains a little amount of CeO2 also. The mono-phasic compound could be obtained at the nominal composition Sr0.55Ce0.45O1.45. The nominal composition Sr2CeO4, under the heat treatment used in the present investigation, was a bi-phasic mixture of SrCeO3 and SrO. No new ordered phases were obtained in this system.  相似文献   

17.
Perovskite thin films with a nominal composition of La0.6Ca0.4Mn1−xFexO3 (x = 0, 0.2) were deposited by pulsed reactive crossed beam laser ablation. The film properties, such as electrical conductivity and magnetoresistance are studied as a function of the oxygen content and substrate type. The oxygen content of the thin films was determined by Rutherford Backscattering and controlled by varying the background gas pressure, pressure of the gas pulse and by using alternatively O2 and N2O as the gas pulse.

LaAlO3 and SrTiO3 were used as substrates at deposition temperature of 650 °C. The grown films were analyzed by X-ray diffraction in order to optimize the growth conditions, i.e. to obtain epitaxial thin films. Thin films doped with 20% Fe were grown under the same experimental conditions as the undoped LCMO films and the effect of the doping on the structural and transport properties of the thin films has been investigated.

The temperature of the metal–insulator transition was measured as a function of the oxygen content and substrate type.  相似文献   


18.
This work aims to study the effect of redox property and surface morphology of perovskite oxides on the catalytic activity of CO oxidation and CO+NO reduction, with the redox property being tuned by doping Fe at the Co site of La0.8Sr0.2Co1-xFexO3 and the surface morphology being modified by supporting La0.8Sr0.2CoO3 on various mesoporous silicas(i.e., SBA-16, SBA-15, MCF). Characteristic results show that the Fe doping improves the match of redox potentials, and SBA-16 is the best support of La0.8Sr0.2CoO3 when referring to the oxidation ability(e.g., the Co3+/Co2+ molar ratio). A mechanism for oxygen desorption from perovskite oxides is proposed based on O2-TPD experiments, showing the evolution process of oxygen released from oxygen vacancy and lattice framework. Catalytic tests indicate that La0.8Sr0.2CoO3 is the best for CO oxidation, and La0.8Sr0.2FeO3 is the best for CO+NO reduction. The mechanism of CO+NO reduction changes as the reaction temperature increases, with XNO/XCO value decreases from 2.4 at 250 ℃ to 1.0 at 400 ℃. As for the surface morphology, La0.8Sr0.2CoO3 supported on SBA-16 possesses the highest surface Co3+/Co2+ molar ratio as compared to the other two, and shows the best activity for CO oxidation.  相似文献   

19.
T. Uma  M. Nogami   《Journal of membrane science》2006,280(1-2):744-751
A new class of proton conducting glass membranes for hydrogen fuel cell applications are being developed using phosphotungstic acid. These glasses are being design to yield high proton conductivities could be potential substitutes for electrolytes in H2/O2 fuel cell. P2O5–SiO2–PWA glasses have been non-crystalline phases confirmed by structural studies. The glass materials showed good mechanical and thermal stability, and also found a maximum proton conductivity of 9.1 × 10−2 S/cm at 90 °C and 30% RH. The average pore size less than 5 nm was determined by Barrett–Joyner–Halenda (BJH) desorption method. The electrochemical activity was investigated by polarization curves and current–voltage profiles. A maximum power density value of 10.2 mW/cm2 was obtained using 0.15 mg/cm2 of Pt/C loaded on electrode and 5P2O5–87SiO2–8PWA glasses at 30 °C and 30% humidity.  相似文献   

20.
The compounds of SrCo0.8Fe0.2O3−δ (SCF) doped with Mg2+, Ca2+, Sr2+, Ba2+, Ti4+ and Zr4+ are synthesized by conventional solid-state reaction. The phase stabilities and oxygen permeabilites of these synthesized oxides are investigated. It is found that the doping Mg2+, Ca2+, Sr2+ and Ba2+ totally dissolve into the SCF unit cell, while SrTiO3 and SrZrO3 phases form when SCF is doped with Ti4+ and Zr4+, respectively. A possible mechanism of the doping behavior is proposed to interpret the structure transformation of the SCF unit cell. Phase stability increases directly with the size of the doping ion when SCF is doped with the ions in the same group. However, the influence of the size of the doping ion on the oxygen permeation behavior is negligible for the membranes doped with the ions in the same group.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号