首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Tetra[α-(4-hydroxyphenoxy)] zinc phthalocyanine, ZnPc(α-OPhOH)4, was synthesized and its photophysics was found to be sharply pH dependent. Dual fluorescence emission around 700 nm was observed when it is dissolved in basic solution. The fluorescence of the phthalocyanine can be sharply switched off at pH 9.1 due to the intramolecular photoinduced electron transfer (PET) in ZnPc(α-OPhONa)4, formed by the deprotonation of ZnPc(α-OPhOH)4. The photophysics of both ZnPc(α-OPhOH)4 and ZnPc(α-OPhONa)4 were studied in detail by UV-vis absorption, steady state and time-resolved fluorescence and transient absorption (TA) to reveal the fluorescence quenching mechanism. Intra-molecular PET in ZnPc(α-OPhONa)4 from the donor, PhONa subunits, to the acceptor, ZnPc moiety, was characterized by the much smaller fluorescence quantum yield (0.003) and lifetime (<0.20 ns). PET was further evidenced by the occurrence of charge separation state (CSS) in TA spectra, i.e. the bands due to anion radical of ZnPc and phenol radical. The lifetime of the charge separation state is ca. 3 ns, the efficiency of PET is ca. 99% and the rate constant of PET is 2.3 × 1010 s−1.  相似文献   

2.
The selective degradation of specific substances in mixed contaminants is quite challenging. And a general approach for sensitized oxide semiconductor relies on dip‐coating method with sensitizer. Here, hydrophilic 2D, nest‐like architecture ZnO (ZnO NA) was hydrophobicly functioned by monomolecular–layer tetraphenylporphyrin zinc (ZnTPP), where ZnTPP was synthesized by means of an in situ center‐substituted (ISCS) process., i.e., the hydrogen atoms in the core of metal‐free tetraphenylporphyrin (H2TPP) are substituted by the unsaturated zinc ions in ZnO NAs. ZnTPP/ZnO NA was exhibited with significant hydrophobicity, benefitting to absorb hydrophobic phenol (PL). Further, it is realized to selectively photodegradate PL in the mixture by ZnTPP/ZnO NAs under visible irradiation. Note that the rate of degradation to hydrophobic PL by ZnTPP/ZnO NA is 9.17 times of that for ZnO NA within 150 min; on the contrary, the degradation rate of hydrophilic rhodamine B (RhB) by ZnTPP/ZnO is reduced by 40%. Radiative lifetime of photogenerated charges is obviously increased by ZnTPP/ZnO NA compared with that of ZnTPP, indicating the effective charge separation for ZnTPP/ZnO NAs. In addition, ZnTPP/ZnO NA produced more superoxide radicals (·O2?) in comparison to ZnO NA. With surface functionalization, the feasibility of selective photocatalysis under visible irradiation is demonstrated.  相似文献   

3.
A nest-like architectures(ZnO NAs)were prepared onto the conductive glass(ITO)by hydrothermal method.A metal-free porphyrin,tetraphenylporphyrin(H2TPP),was synthesized via Adler method.Zn ions with Zn-unsaturated coordination bonds on the surface of ZnO NAs were used as a template,and also H2TPP was used as"molecular fragments".Zinc tetraphenylporphyrin(ZnTPP)molecules were obtained on the surface of ZnO NAs by in-situ method.ZnO NAs direct provides of zinc source makes ZnTPP stably coated on the surface of ZnO NAs nanosheet,formed a tight composite materials(ZnTPP/ZnO NAs).Due toZnTPP with four phenyls in meso position,the surface of ZnTPP/ZnO NAs was with hydrophobic property.In the photocatalytic experiment,the degradation selectivity for phenol(hydrophobicity)in the mixture of phenol and rhodamine B(hydrophily)was increased under visible irradiation.  相似文献   

4.
The shift of the Q-band of sodium zinc(II)-2,9,16,23-phthalocyanine tetracarboxylate (ZnPc(COONa)4) to about 800 nm is attributed to the influence of the electron-donating property of the carboxylate groups substituted in the β–position. ZnPc(COONa)4 which was found to have a symmetry of D 2h characterized by a splitting of the Q transition. This splitting was interpreted by the formation of dianionic symmetric ZnPc(COONa)4 resulting from the dissociation of the pyrrole protons as well as the possibility of Na+ dissolution of ZnPc(COONa)4 in the aqueous solution of NaOH.  相似文献   

5.
Quantized conductance measured from single tetraphenylporphyrin molecules with and without a central zinc(II) [Zn(II)] atom was measured using a molecular break junction (MBJ) method. From the conductance histograms we observed an additional 1.7 Å stretch for two-state conductance in a single Zn(II) tetraphenylporphyrin (ZnTPP) molecule as compared to single state conductance in a free tetraphenylporphyrin (TPP) molecule, i.e., no central Zn(II) atom. First-principles density functional calculations, using an electrode–molecule–electrode model, are completed to provide insight into the mechanisms attributed to bond stretching, and eventual bond breaking, to better understand the additional 1.7 Å of stretching observed with ZnTPP.  相似文献   

6.
本文采用基于多体格林函数方法和Bethe-Salpeter方程(GW/BSE)的电子结构计算方法和非绝热动力学模拟研究了两种不同桥连化学键构型(5-6构型和6-6构型)的酞菁锌-富勒烯(ZnPc-C60)给受体复合物的激发态性质及其弛豫过程. 对于6-6构型,ZnPc-C60的最低激发态S1态为光谱明态,即ZnPc的局域激发(LE)态,因此,6-6构型的ZnPc-C60在光激发之后几乎不会发生电荷分离过程. 相比之下,5-6构型的ZnPc-C60的S1态是C60的LE态,为光谱暗态,而作为光谱明态的ZnPc的LE态的能量更高. 而且,在ZnPc和C60的LE态之间还存在若干电荷转移(CT)态. 因此,电荷转移会在从高能的ZnPc的LE态到低能的C60的LE态的弛豫过程中发生. GW/BSE级别的非绝热动力学模拟结果进一步验证了电子结构计算的结论,并给出了相关过程的时间尺度:从ZnPc到C60的超快激发态能量转移过程在前200 fs完成;随后发生的是由C60到ZnPc的超快空穴转移过程. 本工作表明不同的桥连化学键模式(即5-6和6-6构型)可用于调节ZnPc-C60给体-受体复合物的激发态性质及其光电性质. 与此同时,本工作证明了GW/BSE级别的非绝热动力学方法是探索非周期性给体-受体复合物、有机金属配合物、量子点、纳米团簇等复杂体系的光诱导动力学的可靠工具.  相似文献   

7.
By time-resolved electron paramagnetic resonance (TREPR), four (tetraphenylporphinato) zinc (ZnTPP) complexes coordinated by an axial ligand containing a nitroxide radical (NRX; X=4, 5, 8, and 10, denotes the bond number from zinc to nitroxide nitrogen) have been studied in terms of magnetic interactions between the photoexcited triplet state of ZnTPP and NRX. The TREPR spectrum of ZnTPP coordinated by NR10 is almost the same as the one of ZnTPP coordinated by pyridine, indicating that the electron exchange interaction,J, between ZnTPP and the doublet nitroxide is negligibly small. On the other hand, TREPR spectra of the NR4 and NR5 complexes are assigned to the Q1 state constituted by the ZnTPP and the nitroxide radical. In the case of the ZnTPP-NR8 complex, both T1 and Q1 TREPR signals are seen, which may originate from two conformations or degenerate T1 states of ZnTPP. This EPR study is useful for understanding the photophysical and photochemical properties of chromophores.  相似文献   

8.
We introduce our μSR investigations of spin‐gap systems, such as, (1) a 2‐leg spin‐ladder material SrCu2O3, (2) a Haldane material (S=1 spin‐chain) Y2BaNiO5, (3) a spin‐Peierls material CuGeO3, (4) a spin‐chain# material Sr6Ca8Cu24O41. All of these antiferromagnetic spin systems are characterized by a spin‐gap between the singlet ground‐state and the triplet first excited states. In the above‐mentioned materials, we confirmed the absence of magnetic order down to milli‐Kelvin regime, supporting the non‐magnetic feature of the ground‐state. If a spin‐gap system is doped with charges and/or vacancies at the spin site, unpaired spins are induced out of the singlet ground‐state. In some materials, doping completely destroys the singlet ground‐state and induces a bulk magnetic order. We report μSR investigations of doped materials as well, which clarifies the existence/absence of a magnetic order upon doping. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
A review of data on the photophysics of carotenoids is presented. Results of investigations of spectroscopic, temporal, and energy parameters of excited S1 and S2 singlet states of β-carotene and related compounds are critically examined. These states give rise to extremely high probabilities (1011–1013 sec−1) of radiationless deactivation of the electronic excitation energy in carotenoids. Results of investigations of photophysical properties of triplet states of carotenoids are considered mainly from the standpoint of quenching of singlet oxygen and triplet states of organic molecules by carotenoids. Institute of Molecular and Atomic Physics, Academy of Sciences of Belarus, 70, F. Skorina Ave., Minsk, 220072, Belarus. Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 64, No. 1, pp. 5–19, January–February, 1997.  相似文献   

10.
Oxygen quenching of excited triplet and singlet states of gas-phase anthracene and its derivatives that have similar energies of the lower triplet levels but widely different oxidation potentials (0.44 < Eox < 1.89 V) was studied. Quenching rate constants for singlet (kSO2) and triplet (kTO2) states in addition to the fraction of oxygen-quenched singlet and triplet states qS 1(T1O2 were determined from the decay rates, fluorescence intensities, and delayed fluorescence as functions of oxygen pressure. It was found that kSO2 values vary from 2·104 (9,10-dicyanoanthracene) to 1.2·107 sec−1·torr−1 (anthracene, 9-methylanthracene, 2-aminoanthracene) and kSO2 values from 5·102 to 1·105 sec−1·torr−1. The kSO2 values for anthracene, 9-methylanthracene, and 2-aminoanthracene, which have fast rates of interconversion from S1 to T1, are close to the rate constants for gas-kinetic collisions and are independent of the oxidation potentials (Eox). The quenching rate constants kSO2 for the other anthracene derivatives and kTO2 for all studied compounds decrease with increasing free energy of electron transfer ΔGET, which indicates the important role of charge-transfer interactions in the oxygen quenching of singlet S1- and triplet T1 states. __________ Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 75, No. 1, pp. 36–42, January–February, 2008.  相似文献   

11.
The electron paramagnetic resonance (EPR) signals of photoexcited quartet (Q1) states for zinc(II) tetra-tert-butyl-phthalocyanine (ZnPc) ligated by 3- and 4-(N-nitronyl-nitroxide) pyridine radicals (3-NOPy, 4-NOPy) were observed in toluene solution at room temperature by means of X-band (9.4 GHz) time-resolved EPR (TREPR) spectroscopy. Theg values of Q1 in the ZnPc-3-NOPy and ZnPc-4-NOPy complexes were found to beg=2.0025 andg=2.0036, respectively. The obtainedg value (2.0036) for ZnPc-4-NOPy is in good agreement with the value (g=2.0037) of the Q1 state calculated under the strong-exchange limit. Theg value (2.0025) is just an average of the Q1 and D1 (g=2.0013) states for ZnPc-3-NOPy. Theg value of Q1 for zinc(II) meso-tetraphenylporphine (ZnTPP) ligated by 3-NOPy showed a slight shift (g=2.0027) at X-band and no shift (g=2.0031) at W-band from the calculatedg value (g=2.0031) (J. Fujisawa, Y. Iwasaki, Y. Ohba, S. Yamauchi, K. Koga, S. Karasawa, M. Fuhs, K. Möbius, S. Weber, Appl. Magn. Reson. 21, 483–493, 2001). These changes in theg value were found to originate from an averaging of the TREPR spectra over the Q1 and photoexcited doublet (D1) states via a fast intersystem crossing (ISC) process. The ISC rates between these two states were estimated by means of numerical calculations with the modified Bloch equations as 1.2·108 and 6·107 s?1 for the ZnTPP-3-NOPy complex at the X- and W-bands, respectively. The lower limit of the ISC rate was obtained as 109s?1 for the ZnPc-3-NOPy complex and the higher limit was found to be 3.1·108 s?1 for the ZnPc-4-NOPy complex.  相似文献   

12.
Zinc 2, (3)-tri-(phenylthio)-2, (3)-carboxy phthalocyanine (ZnPc(COOH)(SPh)3), zinc 2, (3)-tetra-(phenylthio) phthalocyanine (ZnPc(SPh)4) and 2, (3)-tetra-(phenylthio) phthalocyanine (H2Pc(SPh)4) were synthesized and their photophysical behavior were compared with those of a number of zinc phthalocyanine (ZnPc) derivatives. ZnPc(COOH)(SPh)3 and ZnPc(SPh)4 had similar fluorescence (ΦF=0.14) and triplet state (ΦT=0.65) quantum yields in dimethylsulfoxide, hence showing no effects of the replacement of one of the phenylthio groups with a carboxylic acid group. ZnPc(COOH)(SPh)3 displayed a slightly shorter triplet lifetime (τT=331 μs) than ZnPc (τT=350 μs) in DMSO, but within the range of ZnPc derivatives. The triplet lifetime for ZnPc(COOH)(SPh)3 is much longer than for the symmetrical derivative (ZnPc(SPh)4) with τT=149 μs in DMSO.  相似文献   

13.
We have pioneered a method of determining the rate constant of quenching of the excited electronic states of molecules by molecular oxygen from measurements of the kinetics of photosensitized luminescence of singlet molecular oxygen (lδg). The method can be used in the case where the lifetime of the excited electronic state in an air-saturated solution is comparable with or larger than the luminescence time of the singlet molecular oxygen in the given solvent. It is shown that this situation is implemented on quenching, by molecular oxygen, of the excited triplet states associated with the biopolymers of tetrapyrrole molecules in aqueous (H2O and D2O) solutions. Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 67, No. 3, pp. 401–404, May–June, 2000.  相似文献   

14.
A number of samples of silver phosphate glasses Ag2O−P2O5−Zn/CdX2 (X=Cl, Br or I) with 1, 5, 10 and 20 mol-% zinc or cadmium halides have been prepared. Control samples of undoped silver phosphate glasses were also prepared. These glasses were characterized by elemental analysis, X-ray diffraction, IR spectra, differential scanning calorimetry, transference number measurements and electrical conductivity studies. These glasses were found to be essentially ionic conductors. The undoped silver phosphate glass (Ag2O−P2O5) has a low σ value in comparison to the doped ones. The conductivity (σ) in the doped glasses increases substantially with increasing concentration of dopant salts Zn/or CdX2 and as the anions of the dopants are changed from Cl to I. It is found that the σ values of the ZnX2 doped glasses are slightly greater than those of the CdX2 doped ones, and the silver phosphate glasses doped with (20 mol-%) Zn/CdI2 yielded maximum conductivity. The results have been discussed and explained on the basis of changes in the structure of the glass matrix by the addition of dopant ions of different sizes, IR spectra and thermal studies.  相似文献   

15.
We report the results of our studies on the nonlinear optical response of thin films of tetraphenyl porphyrin doped in boric acid glass for picosecond-duration pulses. The fluence-dependent transmission measurements show that the sample exhibits reverse saturation behavior at 532 nm and saturable absorber action at 683 nm. By fitting the nonlinear transmission data at these wavelengths to a rate equation model, values for σS e and σL the excited singlet and ground state cross sections were obtained. The large value (≈8) for σS eL makes it a potential material for optical limiting at 532 nm, whereas at 683 nm the ratio σLS e≈4.3. Intensity dependence of degenerate forward four-wave mixing at 683 nm was also investigated to establish the order and magnitude of the nonlinearity. The forward four-wave mixing signal at 683 nm showed a cubic dependence on the input intensity, establishing the third-order nonlinearity. A value of 4×10-12 esu for the third-order susceptibility |χ(3)| was estimated from the measured efficiency. The time response of the nonlinearity was measured by the pump-probe transmission experiment, resulting in a decay constant of about 1.8 ns for the repopulation of the ground singlet state at 683 nm. Received: 13 April 2000 / Published online: 20 September 2000  相似文献   

16.
The ac electrical parameters of thermally evaporated zinc phthalocyanine, ZnPc, semiconducting thin films was measured in the temperature range of 180–390 K and frequency between 0.1 and 20 kHz. Aluminum electrode contacts were utilized to sandwich the organic ZnPc semiconducting films. Capacitance and loss tangent decreased rapidly with frequency at high temperatures, but at lower temperatures a weak variation is observed. An equivalent circuit model assuming ohmic contacts could qualitatively and successfully explains capacitance and loss tangent behavior. The ac conductivity showed strong dependence on both temperature and frequency depending on the relevant temperature and frequency range under consideration. Ac conductivity σ (ω) is found to vary with ω, as ω s with the index s ≤ 1.35 suggesting a dominant hopping conduction process at low temperatures (< 250 K) and high frequency. The conductivity of some samples did not increase monotonically with temperature. This behavior was attributed to oxygen exhaustion of the sample as its temperature is increased. The ac conductivity behavior at low temperatures of ZnPc films could be described well by Elliott model assuming hopping of charge carriers between localized sites.  相似文献   

17.
Strong green luminescence of Ni2+-doped ZnS nanocrystals   总被引:1,自引:0,他引:1  
ZnS nanoparticles doped with Ni2+ have been obtained by chemical co-precipitation from homogeneous solutions of zinc and nickel salt compounds, with S2- as precipitating anion, formed by decomposition of thioacetamide (TAA). The average size of particles doped with different mole ratios, estimated from the Debye–Scherrer formula, is about 2–2.5 nm. The nanoparticles could be doped with nickel during synthesis without altering the X-ray diffraction pattern. A Hitachi M-850 fluorescence spectrophotometer reveals the emission spectra of samples. The absorption spectra show that the excitation spectra of Ni-doped ZnS nanocrystallites are almost the same as those of pure ZnS nanocrystallites (λex=308–310 nm). Because a Ni2+ luminescent center is formed in ZnS nanocrystallites, the photoluminescence intensity increases with the amount of ZnS nanoparticles doped with Ni2+. Stronger and stable green-light emission (520 nm) (its intensity is about two times that of pure ZnS nanoparticles) has been observed from ZnS nanoparticles doped with Ni2+. Received: 18 December 2000 / Accepted: 17 March 2001 / Published online: 20 June 2001  相似文献   

18.
The quenching rate constants for the singlet states (a′)(1)Σ u (v = 1−17), a (1)Π g (v = 0−14), and w (1)Δ u (v = 0−13) of molecular nitrogen colliding with an N2 molecule are calculated using quantum-chemical approximations. It is shown for the first time that both the intramolecular and intermolecular processes of electronic excitation transfer are significant for these states. Calculated rate constants are in satisfactory agreement with experimental data.  相似文献   

19.
We use experimental results of low signal impedance spectroscopy to investigate the conduction mechanism in organic semiconductor, zinc phthalocyanine (ZnPc). The first 10 nm, of a total of 150 nm thermally deposited ZnPc, was doped with molybdenum oxide (MoO3) by co-evaporation to obtain a 20% doping concentration. The ac electrical parameters were measured at room temperature in the dc bias and frequency ranges of 0–5 V and 100 Hz–0.1 MHz, respectively. The variation of bulk resistance with applied bias presents a clear indication of space charge limited conduction in the fabricated device. The experimental results show a strong frequency dependence of capacitance and loss tangent at low frequencies and high applied bias, while at higher frequencies and low applied bias a weak dependence is observed. Moreover, the ac conductivity shows a strong dependence on frequency and is found to vary as ωs with the index s≤1.15 suggesting a dominant hopping mechanism of conduction.  相似文献   

20.
It is shown that proton-associated dipole centers (OH) can provide significant, glasslike contributions to the low-temperature properties of perovskite-type proton conducting oxides, such as ABO3−y , doped with cations of lower valence. These contributions result from the splitting of the orientationally degenerate states of dipole centers by random crystal fields and proton tunneling. It is demonstrated that H/D (or H/T) substitution leads to large and abnormal isotope effects for the properties caused by (OH) degenerate states. The text was submitted by the authors in English.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号