首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
The effect of the HF content on the formation of nanopores in silicon during electrochemical etching was studied. Nanoporous silicon layers were established to be formed only when hydrogen fluoride content in etchants (initial HF content: 49 wt %) was higher than 10–12 vol %. The mass and charge balance of the electrolytic etching of silicon was calculated, and the change in charge number of reaction (effective silicon valence) was determined depending on the HF content. The obtained data were used to propose a silicon etching model with the formation of SiF4 and nanoporous silicon (where nanopores were formed due to the action of predominantly (HF2)? ions).  相似文献   

2.
Steam etched porous graphene oxide network for chemical sensing   总被引:1,自引:0,他引:1  
Oxidative etching of graphene flakes was observed to initiate from edges and the occasional defect sites in the basal plane, leading to reduced lateral size and a small number of etch pits. In contrast, etching of highly defective graphene oxide and its reduced form resulted in rapid homogeneous fracturing of the sheets into smaller pieces. On the basis of these observations, a slow and more controllable etching route was designed to produce nanoporous reduced graphene oxide sheets by hydrothermal steaming at 200 °C. The degree of etching and the concomitant porosity can be conveniently tuned by etching time. In contrast to nonporous reduced graphene oxide annealed at the same temperature, the steamed nanoporous graphene oxide exhibited nearly 2 orders of magnitude increase in the sensitivity and improved recovery time when used as chemiresistor sensor platform for NO(2) detection. The results underscore the efficacy of the highly distributed nanoporous network in the low temperature steam etched GO.  相似文献   

3.
In this paper, we present the results of studies on the photoluminescence (PL) of porous silicon (PSi) samples obtained by etching with the assistance of silver metal in different ways. If the Si sample, after being coated with a layer of silver nanoparticles, is electrochemically etched, its PL intensity becomes hundreds of times stronger than the PL intensity when it is chemically etched in the similar conditions. The difference in the PL intensities is explained partly by the anodic oxidation of silicon which occurs during the electrochemical etching process. The most obvious evidence that silicon had been oxidized anodically in the electrochemical etching process is the disappearance of the PSi layer and the appearance of the silicon oxide layer with mosaic structure when the anodization current density is large enough. The anodic oxidation has the effect of PSi surface passivation. Because of that, the PL of obtained PSi becomes stronger and more stable with time. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
Nano/microstructure control and electrochemical etching of aluminium substrate using a honeycomb alumina mask fabricated by anodisation with self‐assembled spheres aligned on the aluminium surface were studied to directly control the initiation sites of pits. The transfer of the hexagonally ordered pattern of self‐assembled spheres to the aluminium substrate could be achieved by substantially suppressed anodic oxide growth under the spheres where selective electrochemical etching proceeded. That is, etch pits are generated only in the thinner areas or holes of the honeycomb alumina mask with a one‐to‐one correspondence. With this process, improvements in pit distribution density and the homogeneity of pit sizes, while avoiding excessive dissolution of the aluminium surface, could be achieved easily in comparison with the conventional method. The density of pits could also be controlled by changing the diameter of spheres used as an indirect mask. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
The impact sensitivity of the energy systems based on nanoporous silicon, obtained by electrochemical etching of monocrystalline silicon wafers in an HF-containing electrolyte, and calcium perchlorate was studied using a modified Weller—Ventselberg technique (estimation of the impact sensitivity of initiating explosives). The impact sensitivity of these systems is shown to be determined by both the presence of hydrogen, which is stored on the porous silicon surface during the preparation of the latter, and also the influence of other factors, including the specific surface of porous silicon. The composition, amount of the generated gas, and gas evolution rate during nonisothermal and isothermal calcination of porous silicon in a temperature range of 60—120 °С were determined using methods of thermal gravimetry (TG), measurement of the gas volume, and mass spectrometry. The generated gas almost completely consists of hydrogen, and its content in the studied samples of porous silicon achieved ~3.8 wt.%. The calculated activation energy of the hydrogen evolution process in vacuo was 103.7±3.3 kJ mol–1. The dependences of the impact sensitivity of the energy composition based on porous silicon and heat of combustion of porous silicon on oxygen on the hydrogen content were established. The impact sensitivity of the energy system decreases with a decrease in the hydrogen content in porous silicon and its specific surface.  相似文献   

6.
We report on a simple, quantitative relationship between structure and permeability of a novel ultrathin nanoporous membrane based on nanocrystalline silicon. Large permeability of the free-standing nanomembrane to Ru(NH3)63+, O2, or 1,1'-ferrocenedimethanol, which was able to be measured for the first time by employing scanning electrochemical microscopy, is proportional to the density (67 mum-2) and average radius (5.6 nm) of nanopores. As solution electrolyte concentration decreases down to 0.01 M, the nanopores are selectively "closed" against Fe(CN)64- because of electrostatic repulsion against negative charges at the pore wall. Permeability of the silicon nanomembrane was compared to permeability of the nuclear envelope to find that the channel diameter of the nuclear pore complex that perforates the nuclear envelope is much larger than the average diameter of the silicon nanopores and concomitantly a hypothetical diameter of 10 nm.  相似文献   

7.
A matrix-free, high sensitivity, nanostructured silicon surface assisted laser desorption/ionization mass spectrometry (LDI-MS) method fabricated by metal-assisted etching was investigated. Effects of key process parameters, such as etching time, substrate resistance and etchant composition, on the nanostructured silicon formation and its LDI-MS efficiency were studied. The results show that the nanostructured silicon pore depth and size increase with etching time, while MS ion intensity increases with etching time to 300 s then decreases until 600 s for both low resistance (0.001–0.02 Ω cm) and high resistance (1–100 Ω cm) silicon substrates. The nanostructured silicon surface morphologies were found to directly affect the LDI-MS signal ion intensity. By characterizing the nanostructured silicon surface roughness using atomic force microscopy (AFM) and sample absorption efficiency using fluorescence microscopy, it was further demonstrated that the nanostructured silicon surface roughness was highly correlated to the LDI-MS performance.  相似文献   

8.
To test the mass effect on the ring vibrational frequencies (SiO2) shift of the four‐membered silicon oxide ring, the deuterium and the tritium substituted cyclodisiloxanes on the hydrogen positions are examined at the CCSD(T)/cc‐pVTZ level of theory. The SiO2 ring vibrations for a silicon oxide surface model compound, substituted cyclodisiloxane (Si3O5? O2? Si3O5) with two six‐membered ring, are also calculated at the B3LYP/cc‐pVTZ level of theory. Our results of 909 and 920 cm?1 are in good agreement with the experimental result. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

9.
A molecularly thin layer of 2‐aminobenzenethiol (2‐ABT) was adsorbed onto nanoporous p‐type silicon (b‐Si) photocathodes decorated with Ag nanoparticles (Ag NPs). The addition of 2‐ABT alters the balance of the CO2 reduction and hydrogen evolution reactions, resulting in more selective and efficient reduction of CO2 to CO. The 2‐ABT adsorbate layer was characterized by Fourier transform infrared (FTIR) spectroscopy and modeled by density functional theory calculations. Ex situ X‐ray photoelectron spectroscopy (XPS) of the 2‐ABT modified electrodes suggests that surface Ag atoms are in the +1 oxidation state and coordinated to 2‐ABT via Ag?S bonds. Under visible light illumination, the onset potential for CO2 reduction was ?50 mV vs. RHE, an anodic shift of about 150 mV relative to a sample without 2‐ABT. The adsorption of 2‐ABT lowers the overpotentials for both CO2 reduction and hydrogen evolution. A comparison of electrodes functionalized with different aromatic thiols and amines suggests that the primary role of the thiol group in 2‐ABT is to anchor the NH2 group near the Ag surface, where it serves to bind CO2 and also to assist in proton transfer.  相似文献   

10.
Chemical doping has been demonstrated to be an effective way to realize new functions of graphene as metal‐free catalyst in energy‐related electrochemical reactions. Although efficient catalysis for the oxygen reduction reaction (ORR) has been achieved with doped graphene, its performance in the hydrogen evolution reaction (HER) is rather poor. In this study we report that nitrogen and sulfur co‐doping leads to high catalytic activity of nanoporous graphene in HER at low operating potential, comparable to the best Pt‐free HER catalyst, 2D MoS2. The interplay between the chemical dopants and geometric lattice defects of the nanoporous graphene plays the fundamental role in the superior HER catalysis.  相似文献   

11.
The morphology of porous silicon (PS) layers produced by electrochemical etching of n-type (100) silicon (Si) at different low current densities was studied using SEM, image J analysis and WSxM software. From FTIR spectroscopy analysis, the Si dangling bonds of the as-prepared PS layer have large amount of Hydrogen to form weak Si–H bonds. From Raman analysis, a full width half maximum (FWHM) of the Raman peak was gradually increased with increased current density, shifted towards lower energies due to reduce of crystallite size, the crystallite size in the PS varied from 63 nm to 20 nm depending on the current density. The optical response of the PS layer has been performed by the absorbance and Photoluminescence was studied experimentally in the visible range. The optical absorption and photo luminescence in PS is due to excitonic recombination between the defect states as well as on the surface of nanocrystals, and this was attributed to the presence of silicon hydride species which are confirmed by FTIR spectra. The red shift was observed in absorbance and Photoluminescence due to decrease in the size of Si crystallites and growth of Si=O bonds. The contact angle varied from 76° to 120.1°. From the wettability studies, the surface nature of the PS was converted from hydrophilic to hydrophobic when the current density increased.  相似文献   

12.
Here we report on the unprecedentedly high resolution imaging of ion transport through single nanopores by scanning electrochemical microscopy (SECM). The quantitative SECM image of single nanopores allows for the determination of their structural properties, including their density, shape, and size, which are essential for understanding the permeability of the entire nanoporous membrane. Nanoscale spatial resolution was achieved by scanning a 17 nm radius pipet tip at a distance as low as 1.3 nm from a highly porous nanocrystalline silicon membrane in order to obtain the peak current response controlled by the nanopore-mediated diffusional transport of tetrabutylammonium ions to the nanopipet-supported liquid-liquid interface. A 280 nm × 500 nm image resolved 13 nanopores, which corresponds to a high density of 93 nanopores/μm(2). A finite element simulation of the SECM image was performed to assess quantitatively the spatial resolution limited by the tip diameter in resolving two adjacent pores and to determine the actual size of a nanopore, which was approximated as an elliptical cylinder with a depth of 30 nm and major and minor axes of 53 and 41 nm, respectively. These structural parameters were consistent with those determined by transmission electron microscopy, thereby confirming the reliability of quantitative SECM imaging at the nanoscale level.  相似文献   

13.
Thin nanoporous alumina obtained by anodization of aluminum films offers promising advantages for application in fluorescence-based biological sensors including convenient preparation, increased density of binding sites, and improved collection efficiency of fluorescence. These advantages are illustrated in the detection of streptavidin using biotin covalently bound to the surface of alumina nanopores. Fluorescence intensity enhancement as high as 7 times is observed in nanopores in comparison to flat glass surface.   相似文献   

14.
周琦  段德东  冯基伟 《无机化学学报》2019,35(12):2301-2310
采用快速凝固结合去合金化的方法制备纳米多孔Ni-Co合金,利用RuO_2对Ni-Co合金进行表面修饰,通过X射线衍射(XRD)、X射线光电子能谱(XPS)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)对多孔材料进行物相分析和形貌表征,并通过线性扫描伏安法、多电位阶跃法、交流阻抗法和恒电流电解法测试多孔电极的电催化析氢性能。结果表明,Ni-Co/RuO_2复合电极材料在50 mA·cm~(-2)电流密度下析氢过电位为180 mV,析氢过程由Volmer-Heyrovsky步骤控制,交换电流密度为4.42 mA·cm~(-2),经10 h恒电流电解后电位仅增加20 mV,表现出良好的析氢稳定性。  相似文献   

15.
Porous anodic alumina layers were obtained by a simple two-step anodization of low purity aluminum (99.5 % Al, AA1050 alloy) in a 0.3 M oxalic acid electrolyte at 45 V and 20 °C. The effect of anode surface area on structural features of nanoporous oxide and process of oxide formation was investigated. An ordered structure composed of nanostripes or nanopores was formed on the Al surface during electrochemical polishing in a mixture of perchloric acid and ethanol. This nanopattern is then replicated during the anodic oxide formation. It was found that the pore diameter, interpore distance, and porosity increase slightly with increasing surface area of the aluminum sample exposed to the anodizing electrolyte. On the other hand, a slight decrease in pore density and cell wall thickness was observed with increasing surface area of the sample. The detailed inspection of current density vs. time curves was also performed. The obtained results revealed that the higher surface area of the anode, the local current density minimum, was reached faster during first step of anodization and the increase in current density corresponding to the pore rearrangement process was observed earlier. Finally, a dense array of Pd nanowires (~90 nm in diameter) was synthesized by simple electrodeposition of metal inside the channels of through-hole nanoporous anodic alumina templates with relatively large surface areas (4 cm2).  相似文献   

16.
Henssge A  Acker J  Müller C 《Talanta》2006,68(3):581-585
The wet chemical etching of silicon by concentrated HF-HNO3 mixtures in solar and semiconductor wafer fabrication requires the strict control of the etching conditions. Surface morphology and etch rates are mainly affected by the amount of dissolved silicon, that is continuously enriched in the etching solution with each etching run. A fast and robust method for the titrimetric determination of the total dissolved silicon content out of the concentrated etching solution is presented. This method is based on the difference between the two equivalence points of the total amount of acid and the hydrolysis of the hexafluorosilicic anion. This approach allows a silicon determination directly from the etching process in spite of the presence of dissolved nitric oxides in the etching solution. The influences of different acid mixing ratios and of the etching solution density depending on the silicon content is considered and discussed in detail.  相似文献   

17.
Most of research has been carried out for the development of electrocatalysts for hydrogen evolution reaction (HER), which are high activity and low cost. In this study, a practical, usable, highly active, cheap, and none noble metal catalyst was developed for HER. To this end, tungsten disulfide supported on silicon (WS2/Si) and on silicon nanoparticles (WS2/nano-Si) were prepared. To increase the catalytic activity of WS2/nano-Si, chemical etching was used to prepare WS2/nano-Si etched. The synthesized electrocatalysts were characterized using Fortier transform infrared spectroscopy, field emission scanning electron microscopy, X-ray photoelectron spectroscopy, and X-ray diffraction methods. To evaluate the electrochemical attributes of WS2/Si and WS2/n-Si before and after chemical etching, electrochemical impedance spectroscopy, linear sweep, and cyclic voltammetry were used. The electrochemical measurements indicated an intense activity of the WS2/nano-Si/etched, through a high density of the current and low overpotential for HER, with a small overpotential of 0.14 V, Tafel slopes as small as 45 mV dec?1, and large cathodic currents. These results show that through etching process of silicon in HF the quantities of the active sites have been changed and increased considerably.  相似文献   

18.
A nanoporous N-doped reduced graphene oxide (p-N-rGO) was prepared through carbothermal reaction between graphene oxide and ammonium-containing oxometalates as sulfur host for Li-S batteries. The p-N-rGO sheets have abundant nanopores with diameters of 10-40 nm and the nitrogen content is 2.65 at%. When used as sulfur cathode, the obtained p-N-rGO/S composite has a high reversible capacity of 1110 mAh g-1 at 1C rate and stable cycling performance with 781.8 mAh g-1 retained after 110 cycles, much better than those of the rGO/S composite. The enhanced electrochemical performance is ascribed to the rational combination of nanopores and N-doping, which provide efficient contact and wetting with the electrolyte, accommodate volume expansion and immobilize polysulfides during cycling.  相似文献   

19.
We devised a controlled hydrogen plasma reaction at 300 °C to etch graphene and graphene nanoribbons (GNRs) selectively at the edges over the basal plane. Atomic force microscope imaging showed that the etching rates for single-layer and few-layer (≥2 layers) graphene are 0.27 ± 0.05 nm/min and 0.10 ± 0.03 nm/min, respectively. Meanwhile, Raman spectroscopic mapping revealed no D band in the planes of single-layer or few-layer graphene after the plasma reaction, suggesting selective etching at the graphene edges without introducing defects in the basal plane. We found that hydrogen plasma at lower temperature (room temperature) or a higher temperature (500 °C) could hydrogenate the basal plane or introduce defects in the basal plane. Using the hydrogen plasma reaction at the intermediate temperature (300 °C), we obtained narrow, presumably hydrogen terminated GNRs (sub-5 nm) by etching of wide GNRs derived from unzipping of multiwalled carbon nanotubes. Such GNRs exhibited semiconducting characteristics with high on/off ratios (~1000) in GNR field effect transistor devices at room temperature.  相似文献   

20.
A class of nanoporous TiO2 gas sensors processed by novel anodic aluminum oxidation (AAO) of Al thin films and microelectromechnical systems (MEMS) techniques are presented. To enhance the sensitivity and reduce the sensing dimensions of a gas sensor, a nanoporous surface of the gas-sensitive material on the sensor is required. These sensors can be implemented on silicon or silicon dioxide substrate featuring a thin membrane of micro-hotplate structure featuring micro-heaters, thermometers and electrodes, and thus operate as chemoresistive devices. Combining the AAO method with dry-etch process, a homogeneous and nanoporous SiO2 surface of the sensor can be effectively configured by modulating various hole diameters and depth, hence replacing conventional photolithography and electrochemical etch. The process integration including AAO, reactive ion etch (RIE) and microfabrication is mainly developed and a feasibility study of PVD TiO2 thin film deposition upon the porous device is also provided. TiO2 thin films deposited on the nanoporous surface are investigated and compared with non-porous TiO2 films. It is encouraging that our fabrication process is able to provide relatively high surface area to enhance sensitivity of the sensor without additional doping steps. Our promising experimental results have revealed these miniature and cost-effective devices are not only compatible, but applicable to smart bio-chemical sensors of next generation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号