首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Several multinuclear ferrocenyl–ethynyl complexes of formula [(η5-C5H5)(dppe)MII?CC–(fc)n–CC–MII(dppe)(η5-C5H5)] (fc = ferrocenyl; dppe = Ph2PCH2CH2PPh2; 1: MII = Ru2+, n = 1; 2: MII = Ru2+, n = 2; 3: MII = Ru2+, n = 3; 4: MII = Fe2+, n = 2; 5: MII = Fe2+, n = 3) were studied. Structural determinations of 2 and 4 confirm the ferrocenyl group directly linked to the ethynyl linkage which is linked to the pseudo-octahedral [(η5-C5H5)(dppe)M] metal center. Complexes of 15 undergo sequential reversible oxidation events from 0.0 V to 1.0 V referred to the Ag/AgCl electrode in anhydrous CH2Cl2 solution and the low-potential waves have been assigned to the end-capped metallic centers. The solid-state and solution-state electronic configurations in the resulting oxidation products of [1]+ and [2]2+ were characterized by IR, X-band EPR spectroscopy, and UV–Vis at room temperature and 77 K. In [1]+ and [2]2+, broad intervalence transition band near 1600 nm is assigned to the intervalence transition involving photo-induced electron transfer between the Ru3+ and Fe2+ metal centers, indicating the existence of strong metal-to-metal interaction. Application of Hush’s theoretical analysis of intervalence transition band to determine the nature and magnitude of the electronic coupling between the metal sites in complexes [1]+ and [2]2+ is also reported. Computational calculations reveal that the ferrocenyl–ethynyl-based orbitals do mix significantly with the (η5-C5H5)(dppe)Ru metallic orbitals. It clearly appears from this work that the ferrocenyl–ethynyl spacers strongly contribute in propagating electron delocalization.  相似文献   

2.
Two low cytotoxic fluorescence probes Rb1 and Rb2 detecting Fe3+ were synthesized and evaluated. Rb1 and Rb2 exhibited an excellent selectivity to Fe3+, which was not disturbed by Ag+, Li+, K+, Na+, NH4+, Fe2+, Pb2+, Ba2+, Cd2+, Ni2+, Co2+, Mn2+, Zn2+, Mg2+, Hg2+, Ca2+, Cu2+, Ce3+, AcO?, Br?, Cl?, HPO42?, HSO3?, I?, NO3?, S2O32?, SO32? and SO42? ions. The detection limits were 1.87 × 10?7 M for Rb1 and 5.60 × 10?7 M for Rb2, respectively. 1:1 stoichiometry and 1:2 stoichiometry were the most likely recognition mode of Rb1 or Rb2 towards Fe3+, and the corresponding OFF–ON fluorescence mechanisms of Rb1 and Rb2 were proposed.  相似文献   

3.
A novel non-chromatographic approach for direct speciation of mercury, based on the selective retention inorganic mercury and methylmercury on the inner wall of a knotted reactor by using ammonium diethyl dithiophosphate and dithizone as complexing agents respectively, was developed for flow injection on-line sorption preconcentration coupled with chemical vapor generation non-dispersive atomic fluorescence spectrometry. With the sample pH kept at 2.0, the preconcentration of inorganic mercury on the inner walls of the knotted reactor was carried out based on the exclusive retention of Hg–DDP complex in the presence of methylmercury via on-line merging the sample solution with ammonium diethyl dithiophosphate solution, and selective preconcentration methylmercury was achieved with dithizone instead of ammonium diethyl dithiophosphate. A 15% (v/v) HCl was introduced to elute the retained mercury species and merge with KBH4 solution for atomic fluorescence spectrometry detection. Under the optimal experimental conditions, the sample throughputs of inorganic mercury and methylmercury were 30 and 20 h 1 with the enhancement factors of 13 and 24. The detection limits were found to be 3.6 ng l 1 for Hg2+ and 2.0 ng l 1 for CH3Hg+. The precisions (RSD) for the 11 replicate measurements of each 0.2 μg l 1 of Hg2+ and CH3Hg+ were 2.2% and 2.8%, respectively. The developed method was validated by the analysis of certified reference materials (simulated natural water, rice flour and pork) and by recovery measurements on spiked samples, and was applied to the determination of inorganic mercury and methylmercury in biological and environmental water samples.  相似文献   

4.
A novel fluorescent ratiometric chemosensor based on 4-pyren-1-yl-pyrimidine (PPM) has been designed and prepared for the detection of Hg2+ in the presence of other competing metal ions in acetonitrile. The photo exhibits fluorescence color change of PPM from blue to green without and with Hg2+, which red shift of wavelength about 105 nm in fluorescence emission spectra. It can serve as a highly selective chemodosimeter for Hg2+ with ratiometric and naked-eye detection. The photophysical properties of PPM confirmed a 2:1 (PPM–Hg2+) binding model and the spectral response toward Hg2+ was proved to be reversible.  相似文献   

5.
A simple and inexpensive laboratory-built flow injection vapor generation system coupled to atomic absorption spectrometry (FI-VG AAS) for inorganic and total mercury determination has been developed. It is based on the vapor generation of total mercury and a selective detection of Hg2 + or total mercury by varying the temperature of the measurement cell. Only the inorganic mercury is measured when the quartz cell is at room temperature, and when the cell is heated to 650 °C or higher the total Hg concentration is measured. The organic Hg concentration in the sample is calculated from the difference between the total Hg and Hg2 + concentrations. Parameters such as the type of acid (HCl or HNO3) and its concentration, reductant (NaBH4) concentration, carrier solution (HCl) flow rate, carrier gas flow rate, sample volume and quartz cell temperature, which influence FI-VG AAS system performance, were systematically investigated. The optimized conditions for Hg2 + and total Hg determinations were: 1.0 mol l 1 HCl as carrier solution, carrier flow rate of 3.5 ml min 1, 0.1% (m/v) NaBH4, reductant flow rate of 1.0 ml min 1 and carrier gas flow rate of 200 ml min 1. The relative standard deviation (RSD) is lower than 5.0% for a 1.0 μg l 1 Hg solution and the limit of quantification (LOQ, 10 s) is 55 ng g 1. Certified samples of dogfish muscle (DORM-1 and DORM-2) and non-certified fish samples were analyzed, using a 6.0 mol l 1 HCl solution for analyte extraction. The Hg2 + and CH3Hg+ concentrations found were in agreement with certified ones.  相似文献   

6.
A simple Schiff base CTS, synthesized between 2-hydroxy-1-naphthaldehyde and 2-benzylthio-ethanamine, was found to be a good turn-on fluorescence probe for the detection of Zn2+, due to the restriction of the rotation of the bond between CN and naphthalene ring and/or the blocking of the photo-induced electron transfer (PET) mechanism of the nitrogen atom to naphthalene ring. Excellent selectivity for Zn2+ was evidenced, over many other competing ions, including Fe3+, Cr3+, Ni2+, Co2+, Fe2+,Mn2+, Ca2+, Hg2+, Pb2+, Cu2+, Mg2+, Ba2+, Cd2+, Ag+, Li+, K+, and Na+, in EtOH/HEPES buffer (95:5, v/v, pH = 7.4). It was noteworthy that Cd2+ had no interference with Zn2+. The stoichiometric complex of CTS-Zn2+ was determined to be 2:1 for CTS and Zn2+ in molar, based on the Job plot and single crystal X-ray diffraction data. The binding constant of the complex was 85.7 M?2 with a detection limit of 5.03 × 10?7 M. The fluorescence bio-imaging capability of CTS to detect Zn2+ in live cells was also studied. These results indicated that CTS could serve as a favorable probe for Zn2+.  相似文献   

7.
Two new Ru(II) complexes, [Ru(bpy)2(1-COO-iqu)]+ (2; bpy = 2,2′-bipyridine, 1-COO-iqu? = isoquinoline-1-carboxylate) and [Ru(bpy)2(3-COO-iqu)]+ (3; 3-COO-iqu? = isoquinoline-3-carboxylate), were prepared and their crystal structures solved. The ground and excited state properties of 2 and 3 were characterized and compared to those of [Ru(bpy)3]2+ (1). The presence of the oxygen atom in the Ru(II) coordination sphere makes 2 and 3 easier to oxidize than 1. The Ru  bpy MLCT absorption and emission of 2 and 3 are red-shifted relative to that of 1 in CH2Cl2, and the E00 energies were estimated to be 1.89 eV and 1.95 eV from the low temperature emission of 2 and 3, resulting in excited state oxidation potentials of ?1.03 V and ?1.10 V vs SCE, respectively. In addition to the short-lived emissive 3MLCT state, a long-lived species is observed in the transient absorption of 3 in DMSO (τ = 49 μs) and pyridine (τ = 44 μs), assigned to a solvent-coordinated complex. This intermediate is not observed for 3 in non-polar solvents or for 2. The absence of the solvent coordinated intermediate in 2 is explained by the stronger Ru–O bond afforded by the lower conjugation in that extends onto the carboxylic acid in the 1-COO-iquo?ligand, compared to that in the 3-COO-iqu?ligand in 3. Transient absorption experiments also show that the 3MLCT excited state of 3 is able to reduce methyl viologen.  相似文献   

8.
An ultra-sensitive and highly selective electrochemical label-free aptasensor is proposed for the quantitation of Hg2 + based on the hybridization/dehybridization of double-stranded DNA (dsDNA) on a gold electrode. Thiol-substituted single-stranded DNA (ssDNA) is self-assembled on the gold electrode surface through the SAu interaction. The hybridization of ssDNA with complementary DNA (cDNA) and the consequences of dehybridization in the presence of mercury ions are followed through differential pulse voltammetry (DPV) responses using a [Fe(CN)6]3 −/4  redox probe. The formation of a thymine–Hg2 +–thymine (T–Hg2 +–T) complex is the key to producing a highly selective and sensitive aptasensor for Hg2 + determination. Specifically, the present electrochemical aptasensor is able to quantify Hg2 + ions in concentrations from 5 zeptomolar (zM) to 55 picomolar (pM) with a limit of detection of 0.6 zM, close to the dream of single atom detection, without requiring a complicated procedure or expensive materials.  相似文献   

9.
A new benzothizole-based fluorescent probe 1 for Hg2+ recognition utilizing “ESIPT+AIE” strategy has been developed. In THF/H2O (1:1, v/v, PBS 20 mM, pH = 8.5) mixed solution, probe 1 displays rapid fluorescence responses to Hg2+ ions with high selectivity and sensitivity through Hg2+-triggered releasing of a compound possessing “ESIPT+AIE” characteristics. Cell imaging investigations indicate that probe 1 is cell permeable with low toxicity to MCF-7 cells, and applicable to detect Hg2+ ions in living MCF-7 cells.  相似文献   

10.
In 0.2 mol/L HCl–0.22 mol/L HNO3 medium, trace Hg2+ catalyzed NaH2PO2 reduction of HAuCl4 to form gold nanoparticles (AuNPs), which exhibited a strong resonance Rayleigh scattering (RRS) effect at 370 nm. With increasing of [Hg2+], the RRS effect enhanced due to more AuNP generated from the catalytic reaction. Under the chosen conditions, the enhanced RRS intensity at 370 nm is linear to Hg2+ concentration in the range of 5.0–450 × 10−9 mol/L, with a detection limit of 0.1 nmol/L. This RRS method was applied for the determination of Hg in water samples, with high sensitivity and good selectivity, and its results were agreement with that of atomic fluorescence spectrometry.  相似文献   

11.
The intramolecularly donor-stabilized silenes ArR1SiC(SiMe3)2 (3ad) (3a: R1 = Me; 3b: R1 = t-Bu; 3c: R1 = Ph; 3d: R1 = SiMe3; Ar = 2,6-(Me2NCH2)2C6H3) were prepared by treatment of the (dichloromethyl)oligosilanes (Me3Si)2R1Si–CHCl2 (1ad), with 2,6-bis(dimethylaminomethyl)phenyllithium (molar ratio 1:2). For 3c and 3d, X-ray structural analyses were performed indicating that only one dimethylamino group of the tridentate ligand is coordinated to the electrophilic silene silicon atoms, i.e., the central silicon atoms are tetracoordinated. The N  Si donation leads to pyramidalization at the silene silicon atoms; the configuration at the silene carbon atoms is planar. For a chemical characterization 3a and 3c were treated with water to give the silanols ArR1Si(OH)–CH(SiMe3)2 (5a,c). Studies of the reactions of 3a and 3c with benzaldehyde, 4-chlorobenzaldehyde or 4-methoxybenzaldehyde, respectively, revealed an unexpected reaction path leading to the substituted 2-oxa-1-sila-1,2,3,4-tetrahydronaphthalenes 12a, 12c, 13 and 14. Both 12a and 12c were structurally characterized by X-ray analyses. The formation of these six-membered cyclic compounds, which is discussed in detail, gives support to a dipolar mechanism for the general reaction of silenes with carbonyl derivatives.  相似文献   

12.
Using the polyfunctional ligand 2-phosphonethanesulfonic acid (H3L) a high-throughput (HT) study was started for the systematic investigation of the system SrCl2/H3L/NaOH/H2O. The HT experiment comprising 48 individual reactions were performed to systematically investigate the influence of pH of the starting mixture as well as the molar ratio Sr2+:H3L. Two new compounds SrH(O3P–C2H4–SO3) (1) and Sr3(O3P–C2H4–SO3)2(H2O)2 (2) were obtained and structurally characterized by single-crystal X-ray diffraction. The reaction products synthesized under hydrothermal conditions always contain traces of SrSO4, which are due to the decomposition of small amounts of the ligand. While compound 2 could only be obtained under hydrothermal conditions, the synthesis of 1 could be accomplished under milder reaction conditions and a reaction scale-up could be performed. Compound 1 crystallizes in a monoclinic system with space group C2/c (no. 15), a = 534.73(11) pm, b = 1648.7(3) pm, c = 825.43(17) pm, β = 105.34(3)°, V = 701.8(2)–106 pm3, Z = 4, R1 = 0.0268, and wR2 = 0.0642 for I > 2σ(I). Compound 2 crystallizes in a triclinic system with space group P-1 (no. 2), a = 700.97(14) pm, b = 1008.5(2) pm, c = 1274.8(3) pm, α = 97.63(3)°, β = 92.03(3)°, γ = 92.03(3)°, V = 843.7(3)–106 pm3, Z = 2, R1 = 0.0360, and wR2 = 0.0896 for I > 2σ(I). In the structure of compound 1 the phosphorous and sulfur atoms cannot be distinguished due to identical crystallographic positions. Thus, an averaged structure was obtained which is built up by edge-sharing SrO8 polyhedra that form infinite M–O–M chains. Compound 2 contains corner-, edge-, and face-sharing SrO8 polyhedra which form inorganic M–O–M layers. These M–O–M chains (1) and layers (2) are connected to a three-dimensional network by the –CH2CH2– group of the ligand, respectively. Additional characterization by thermogravimetric analysis and IR-spectroscopy for compound 1 is also presented.  相似文献   

13.
《Polyhedron》2005,24(16-17):2269-2273
Two ion-pair compounds, consisting of 1-(4′-R-benzyl)pyridinium ([RBzPy]+, R = NO2 (1) and Br (2)) and [Ni(dmit)2] (dmit2− = 2-thioxo-1,3-dithion-4,5-dithiolato), have been synthesized and structurally characterized. The anions of [Ni(dmit)2] stack into dimers, which further construct into two-leg ladder through terminal S⋯S interactions in 1, lateral S⋯S interactions in 2. The weak H-bonding interactions of C–H⋯S were observed in 2, while only weak van de Waals interactions between anion and cations in 1. The magnetic susceptibilities measured in 2–300 K indicate AFM exchange interaction domination both two compounds. A peculiar magnetic transition at ∼100 K was observed in 1. An AFM ordering below ∼11 K was found in 2, and the best fit to magnetic susceptibility above 45 K in this compound, using a dimer model with s = 1/2, give rise to Δ/kB = 36.1 K, zJ = −0.91 K, C = 3.2 × 10−3 emu K mol−1 and χ0 = −4.0 × 10−6 emu mol−1 with g of 2.0 fixed.  相似文献   

14.
Fourteen new organic molecules A1A4, B1B5, C1C4 and D and a series of transition metal(II) complexes (Ni1Ni9 and Pd1Pd2b) were synthesized and studied in order to characterize the hemilability of 2-(1H-imidazol-2-yl)pyridine and 2-(oxazol-2-yl)pyridine ligands (A1A4 = 2-R2-6-(4,5-diphenyl-1R1-imidazol-2-yl)pyridines, R1 = H or CH3, R2 = H or CH3; B1B5 = 1-R2-2-(pyridin-2-yl)-1R1-phenanthro[9,10-d]imidazoles/oxazoles, R1 = H or CH3, R2 = H or CH3; C1C4 = 2-(6-R2-pyridin-2-yl)-1H-imidazo/oxazo[4,5-f][1,10]phenanthrolines, R2 = H or CH3; D = 2-mesityl-1H-imidazo[4,5-f][1,10]phenanthroline). They were also used to study the substituent effects on the donor strengths as well as the coordination chemistries of the imidazole/oxazole fragments of the hemilabile ligands.All the observed protonation–deprotonation processes found within pH 1–14 media pertain to the imidazole or oxazole rings rather than the pyridyl Lewis bases. The donor characteristics of the imidazole/oxazole ring can be estimated by spectroscopic methods regardless of the presence of other strong N donor fragments. The oxazoles possessed notably lower donor strengths than the imidazoles. The electron-withdrawing influence and capacity to hinder the azole base donor strength of 4,5-azole substituents were found to be in the order phenanthrenyl (B series) > 4,5-diphenyl (A series) > phenanthrolinyl (C series). An X-ray structure of Ni5b gave evidence for solvent induced ligand reconstitution while the structure of Pd2b provided evidence for solvent induced metal–ligand bond disconnection.Interestingly, alkylation of 1H-imidazoles did not necessarily produce the anticipated push of electron density to the donor nitrogen. Furthermore, substituents on the 4,5-carbons of the azole ring were more important for tuning donor strength of the azole base. DFT calculations were employed to investigate the observed trends. It is believed that the information provided on substituent effects and trends in this family of ligands will be useful in the rational design and synthesis of desired azole-containing chelate ligands, tuning of donor properties and application of this family of ligands in inorganic architectural designs, template-directed coordination polymer preparations, mixed-ligand inorganic self-assemblies, etc.  相似文献   

15.
《Solid State Sciences》2007,9(8):686-692
Hydrothermal reactions of 2-quinolinephosphonic acid (1) and CuSO4 or CdSO4 result in two new compounds with formula Cu(2-C9H6NPO3) (2) and Cd(2-C9H6NPO3)(H2O) (3). Compound 2 has a layer structure in which dimers of edge-sharing {CuO4N} square-pyramids are linked by {CPO3} tetrahedra through corner sharing. Compound 3 shows a new type of layer structure where chains of corner sharing {CdO5N} octahedra are connected by {CPO3} tetrahedra into an inorganic layer. The quinoline groups fill in the inter-layer spaces in both cases. Crystal data for 1: monoclinic, space group P21/c, a = 10.270(2) Å, b = 13.566(3) Å, c = 6.9818(16) Å, β = 101.916(4)°, V = 951.8(4) Å3, Z = 4. For 2: monoclinic, space group P21/c, a = 13.976(3) Å, b = 7.9398(18) Å, c = 7.8687(18) Å, β = 101.150(5)°, V = 856.7(3) Å3, Z = 4. For 3: monoclinic, space group P21/c, a = 17.164(4) Å, b = 5.4870(12) Å, c = 10.850(2) Å, β = 101.557(4)°, V = 1001.1(4) Å3, Z = 4. The magnetic measurement on 2 reveals a dominant antiferromagnetic exchange coupling between the Cu(II) centers. A quasi-reversible electrochemical reaction is observed for complex 2 immobilized on the surface of GC electrode, corresponding to the redox couple Cu2+/Cu+. The fluorescent properties of 13 are also investigated.  相似文献   

16.
《Polyhedron》2005,24(3):451-461
Reaction of 2,9-dioxo-1,4,7,10-tetraazabicyclo[1.10.1]hexadeca-1(11),13,15-triene-4,7-diacetic acid (H2L1) with CuCl2 · 2H2O in ethanol at pH 6 led to the monomeric benzodioxochlorocomplex [Cu(L1)Cl] (1) (HL1 = monoethylesther of H2L1). X-ray structural analysis has shown that in complex 1 the Cu is five-coordinated by two nitrogen and two oxygen atoms of the macrocycle and by a chloride, displaying a square pyramidal coordination geometry. One of the acetate arms does not coordinate to the Cu and has suffered an in situ ethanolic esterification reaction. The protonation constants of H2L1 and the stability constants of its complexes with Cu2+, Ni2+, Zn2+, Cd2+ and Pb2+ were determined by potentiometric methods and in some cases by 1H NMR spectroscopy. The stability constants of the complexes follow the trend [Ni(H1L1)] > [Cu(H1L1)]  [Pb(H1L1)] > [Zn(H1L1)] > [Cd(H1L1)], probably due to steric requirements. Spectroscopic measurements (absorption and EPR) at different pH values have shown the effect of the pH on the coordination sphere of the Cu complexes.  相似文献   

17.
《Comptes Rendus Chimie》2007,10(8):721-730
The cationic tetra-coordinated 16 electron complex [Ir(trop2dach)]+OTf (1) where (OTf = CF3SO3) and the neutral amine amido complex [Ir(trop2dach-1H)] (2) were isolated and structurally characterized. The NH function in 1 is easily deprotonated (pKaDMSO = 10.5) to yield the amino amido complex [Ir(trop2dach-1H)] (2), which is deprotonated at pKaDMSO = 19.6 to the anionic di(amido) iridate [Ir(trop2dach-2H)] (3); [(R,R)-top2dach stands for the tetrachelating diamino diolefin ligand (R,R)-N,N′-bis(5H-dibenzo[a,d]cyclohepten-5-yl)-1,2-diaminocyclohexane; (R,R)-top2dach-1H and (R,R)-top2dach-2H indicate the mono and double deprotonated form]. Complex 3 is easily oxidized by 1,4-benzoquinone (BQ) to the neutral iridium aminyl radical complex [Ir(trop2dach-2H)] (4). In combination with BQ as hydrogen acceptor and catalytic amounts of base, 4 serves as catalyst in the highly efficient dehydrogenation of functionalized primary alcohols to the corresponding aldehydes, RCH2OH + BQ  RCHO + H2BQ (H2BQ = catechol). Alcohols like geraniol and retinol are rapidly converted to geranial and retinal, while the conversion of sterically hindered alcohols like lavandulol is slower and the primary product, lavandulal, isomerizes to isolavandulal in a classical base-catalyzed reaction.  相似文献   

18.
Reactions of copper(I) halides with a series of thiosemicarbazones, namely, benzaldehyde thiosemicarbazone (R1R2CN–NH–C(S)–NH2, R1 = Ph, R2 = H; Hbtsc), 2-benzoylpyridine thiosemicarbazone (R1 = Ph, R2 = py; Hbpytsc), and acetone thiosemicarbazone (R1 = R2 = Me; Hactsc), in the presence of PPh3 has formed dimeric complexes, viz. sulfur bridged [Cu2(μ-S-Hbtsc)2Br2(PPh3)2]·2H2O (1), iodo-bridged [Cu2(μ-I)21-S-Hbtsc)2(PPh3)2] (2), and heterobridged [Cu23-S,N3-Hactsc)(η1-Br)(μ-Br)(PPh3)2] (3), as well as mononuclear complexes [CuX(η1-S-Hbpytsc)(PPh3)2]·CH3CN (X = Br, 4; Cl, 5). Complexes 1, 2, 4 and 5 involve thiosemicarbazone ligands in η1-S bonding mode while in compound 3, ligand acts in N3, S-chelation-cum-S-bridging mode (μ3-S,N3 mode). The intermolecular interactions such as, N2H?X, HN1H?X (X = S, Br, Cl), CH?π interactions lead to 2D networks. All the complexes have been characterized with the help of elemental analyses, IR, 1H, and 31P NMR spectroscopy, and single crystal X-ray crystallography. The role of a solvent in alteration of nuclearity and bonding modes of complexes has been highlighted.  相似文献   

19.
《Solid State Sciences》2007,9(11):1012-1019
Two novel inorganic–organic hybrid compounds composed of Keggin tungstocobaltate framework and cobalt(II)–N coordination complexes, K[Co(phen)2(H2O)]2[HCoW12O40]·2H2O (1) (phen = 1,10-phenanthroline) and [Co(2,2′-bipy)3]1.5{[Co(2,2′-bipy)2(H2O)][HCoW12O40]·0.5H2O (2) (bipy = bipyridine), have been synthesized under hydrothermal conditions by directly using Keggin POMs as starting materials, which were characterized by elemental analyses, IR, TG analyses and X-ray single crystal diffraction. Crystal data for compound 1: C48H41Co3KN8O44W12, triclinic, space group P-1, a = 10.918(5) Å, b = 13.401(5) Å, c = 13.693(5) Å, α = 69.291(5)°, β = 71.568(5)°, γ = 78.421(5)°, V = 1768.9(12) Å3, Z = 1; for compound 2: C130H104Co7N26O83W24, orthorhombic, space group, C2/c, a = 46.839(9) Å, b = 14.347(3) Å, c = 26.147(5) Å, α = β = γ = 90°, V = 17,570(6) Å3, Z = 4. Compound 1 exhibits a pseudo-1D chainlike structure, in which potassium ions act as linkages of Keggin unit doubly grafted by [Co(phen)2(H2O)] complex. Compound 2 represents a [Co(2,2′-bipy)2(H2O)]2+ mono-grafted Keggin tungstocobaltate derivative with 1.5[Co(2,2′-bipy)3]2+ countercations. The cyclic voltammetric behavior of 1-CPE is similar to the parent 3-CPE, but the cyclic voltammetric behavior of CoII shows a little difference. Variable-temperature magnetic susceptibility measurement of compound 1 demonstrates the presence of antiferromagnetic interactions.  相似文献   

20.
Irradiation and heat treatment were performed on tourmalines of various colors from Antandrokomby, Madagascar. The samples were irradiated with 10 MeV electrons to fluencies of 2 ×1017 cm−2 for 1 h and were heated at 550 °C for 3 h in air. Their electronic and vibrational spectra were investigated by UV–vis, mid-infrared, and WD-XRF spectroscopy for comparison to pristine samples. Changes in the Mn3+ ions after irradiation resulted in darker pink tourmalines, which had absorption peaks at 390 and 520 nm. These samples became colorless after subsequent heat treatment. After irradiation, colorless, light blue and yellow tourmalines displayed a new absorption band at 365 nm. Alteration of the stretching absorption bands and wavenumber after irradiation could be explained by the following reactions:OH + e beam irradiation  O + H°,Mn2+ + e beam irradiation  Mn3+ + e andFe2+ + e beam irradiation  Fe3+ + e.Stretching vibration of the BO3 structure occurred at 1330 cm−1, while the SiO vibration absorption bands were assigned to around 1100 cm−1. Colorless, green, and yellow tourmalines showed high-intensity peaks around 3608 and 3505 cm−1 after irradiation. Pink and dark green tourmalines showed low-intensity peaks at 3605 and 3585 cm−1, respectively. The combination modes of stretching and bending in the range of 4600–4300 cm−1 were split after irradiation and heat treatment, and different color changes occurred after irradiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号