首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Flow-through drying of ionic liquids in porous media can lead to super saturation and hence crystallization of salts. A model for the evolution of solid and liquid concentrations of salt, in porous media, due to evaporation by gas flow is presented. The model takes into account the impact of capillary-driven liquid film flow on the evaporation rates as well as the rate of transport of salt through those films. It is shown that at high capillary wicking numbers and high dimensionless pressure drops, supersaturation of brine takes place in the higher drying rate regions in the porous medium. This leads to solid salt crystallization and accumulation in the higher drying rate region. In the absence of wicking, there is no transport and accumulation of solid salt. Results from experiments of flow-through drying in rock cores are compared with model prediction of salt crystallization and accumulation.  相似文献   

2.
The main focus of this work is to model macroscopically the effects of partial saturation upon the permeability of dual scale fibrous media made of fiber bundles when a Newtonian viscous fluid impregnates it. A new phenomenological model is proposed to explain the discrepancies between experimental pressure results and analytical predictions based on Darcy's law. This model incorporates the essential features of relative permeability but without the necessity of measuring saturation of the liquid for its prediction. The model is very relevant for the small scale industrial systems where a liquid is forced to flow through a fibrous porous medium. It requires four parameters. Two of them are the two permeability values based on the two length scales. One length scale is of the order of magnitude of the individual fiber radius and corresponds to the permeability of the completely staurated medium, the other is of the order of magnitude of the distance between the fiber bundles and corresponds to the permeability of the partially saturated medium. The other two parameters are the lengths of the two partially saturated regions of the flow domain. The two lengths of the partially saturated region and the permeability of the fully saturated flow domain can be directly measured from the experiments. The excellent agreement between the model and the experimental results of inlet pressure profile with respect to time suggests that this model may be used to describe the variation of the permeability behind a moving front in such porous media for correct pressure prediction. It may also be used to characterize the fibrous medium by determining the two different permeabilities and the relative importance of the unsaturated portion of the flow domain for a given architecture.  相似文献   

3.
The plane one-dimensional and radially symmetric problems of injection of superheated steam into a porous medium saturated with gas are considered. Self-similar solutions are constructed on the assumption that in this case four zones are formed in the porous medium, namely, a gas flow zone, superheated and wet steam zones, and a water slug zone formed due to steam condensation. On the basis of the solution obtained, both the effects of the boundary pressure, mass flow rate, and temperature of the injected superheated steam and the effect of the initial state of the porous medium on the propagation of the hydrodynamic and thermal fields in the porous medium are studied.  相似文献   

4.
It becomes increasingly clear that non-uniform distribution of immiscible fluids in porous rock is particularly relevant to seismic wave dispersion. White proposed a patchy saturation model in 1975, in which spherical gas pockets were located at the center of a liquid saturated cube. For an extremely light and compressible inner gas, the physical properties can be approximated by a vacuum with White's model. The model successfully analyzes the dispersion phenomena of a P-wave velocity in gas-watersaturated rocks. In the case of liquid pocket saturation, e.g., an oil-pocket surrounded by a water saturated host matrix, the light fluid-pocket assumption is doubtful, and few works have been reported in White's framework. In this work, Poisson's ratio, the bulk modulus, and the effective density of a dual-liquid saturated medium are formulated for the heterogeneous porous rocks containing liquid-pockets. The analysis of the difference between the newly derived bulk modulus and that of White's model shows that the effects of liquid-pocket saturation do not disappear unless the porosity approaches zero. The inner pocket fluid can no longer be ignored. The improvements of the P-wave velocity predictions are illustrated with two examples taken from experiments, i.e., the P-wave velocity in the sandstone saturated by oil and brine and the P-wave velocity for heavy oils and stones at different temperatures.  相似文献   

5.
We study numerically and experimentally the displacement of a liquid by a gas in a two-dimensional model porous medium. In contrast with previous pore network studies on drainage in porous media, the gas pressurization is fully taken into account. The influence of the gas injection rate on the displacement pattern, breakthrough time and the evolution of the pressure in the gas phase due in part to gas compressibility are investigated. A good agreement is found between the simulations and the experiments as regards the invasion patterns. The agreement is also good on the drainage kinetics when the dynamic liquid films are taken into account.  相似文献   

6.
The infiltration of a wetting droplet into the porous medium is a two-step process referred to as primary and secondary infiltration. In the primary infiltration there is a free liquid present at the porous medium surface, and when no fluid is left on the surface, the secondary infiltration is initiated. In both situations the driving force is the capillary pressure that is influenced by the local medium heterogeneities. A capillary network model based on the micro-force balance is developed with the same formulation applied to both infiltrations. The only difference between the two is that the net liquid flow into the porous medium in the secondary infiltration is equal to zero. The primary infiltration starts as a single-phase (fully saturated) flow and may proceed as a multiphase flow. The multiphase flow emerges as the interface (flow front) becomes irregular in shape. The immobile clusters of the originally present phase can be locally formed due to entrapment. Throughout the infiltration, it was found that portions of the liquid phase can be detached from the main body of the liquid phase forming some isolated liquid ganglia that increase in number and decrease in size. The termination of the secondary infiltration occurs once the ganglia become immobile due to their reduction in size. From the transient solution, the changes in the liquid saturation and capillary pressure during the droplet infiltration are determined. The solution developed in this study is used to investigate the droplet infiltration dynamics. However, the solution can be used to study the flow in fuel cell, nano-arrays, composites, and printing.  相似文献   

7.
A set of equations governing the consolidation of a two-phase medium consisting of a porous elastic skeleton saturated with a highly compressible liquid (gas), is described. The homogenization method was utilized to deduce the equations. For the equivalent macroscopic medium, mass and momentum conservation equations and the flow equation of pore liquid are presented. Sample material constants were calculated using laboratory test results which were carried out at the Institute of Geotechnics, Technical University of Wroclaw.  相似文献   

8.
Foam flow experiments were carried out to study the influence factors such as surfactant concentration, foam quality, injection rate of liquid and gas, permeability of porous media, temperature, and oil saturation on blocking ability and flowing characteristics of steady foams in porous media. Foam blocking mechanisms and flowing characteristics were summarized according to the experimental results and foam migration behavior. The results showed that the pressure distribution of flowing foams was linearly descending in porous media at steady state. The results further showed that the foam size and quality in pores along the sand pack were almost uniform, that is, foam generation and destruction gradually reached dynamic equilibrium at steady state. In porous media, the blocking ability of steady foams increased with the concentration of the foaming agent and the increase in the permeability of porous media, but the blocking ability decreased with the increase in the temperature, the shearing rate, and the oil saturation of the porous media. Foam resistance factor reached maximal value at the foam quality of 85% in porous media.  相似文献   

9.
This work proposes a mathematical model to study the filling up of an unsaturated porous medium by a liquid identifying the transition from unsaturated to saturated flow and allowing a small super saturation. As a consequence the problem remains hyperbolic even when saturation is reached. This important feature enables obtaining numerical solution for any initial value problem and allows employing Glimm’s scheme associated with an operator splitting technique for treating drag and viscous effects. A mixture theory approach is used to build the mechanical model, considering a mixture of three overlapping continuous constituents: a solid (porous medium), a liquid (Newtonian fluid) and a very low-density gas (to account for the mixture compressibility). The constitutive assumption proposed for the pressure gives rise to a continuous function of the fluid fraction. The complete solution of the Riemann problem associated with the system of conservation laws, as well as four examples, considering all the four possible connections, namely, 1-shock/2-shock, 1-rarefaction/2-rarefaction, 1-rarefaction/2-shock and 1-shock/2-rarefaction are presented.  相似文献   

10.
The process of formation of a gas hydrate in a finite-length porous medium partially saturated with water, which is purged by a cold gas, is studied. The influence of the initial parameters of the porous medium and purging conditions on the evolution of hydrate saturation and temperature is examined.  相似文献   

11.

Surfactant-alternating-gas (SAG) is a favored method of foam injection, in part because of excellent gas injectivity. However, liquid injectivity is usually very poor in SAG. We report a core-flood study of liquid injectivity under conditions like those near an injection well in SAG application in the field, i.e., after a prolonged period of gas injection following foam. We inject foam [gas (nitrogen) and surfactant solution] into a 17-cm-long Berea core at temperature of 90 °C with 40 bar back pressure. Pressure differences are measured and supplemented with CT scans to relate water saturation to mobilities. Liquid injectivity directly following foam is very poor. During prolonged gas injection following foam, a collapsed-foam region forms near the inlet and slowly propagates downstream, in which water saturation is reduced. This decline in liquid saturation reflects in part liquid evaporation, also pressure-driven flow and capillary effects on the core scale. In the collapsed-foam region, liquid mobility during subsequent liquid injection is much greater than downstream, and liquid sweeps the entire core cross section rather than a single finger. Mobility in the region of liquid fingering is insensitive to the quality of foam injected before gas and the duration of the period of gas injection. This implies that at the start of liquid injection in a SAG process in the field, there is a small region very near the well, crucial to injectivity, substantially different from that further out, and not described by current foam models. The results can guide the development of a model for liquid injectivity based on radial propagation of the various banks seen in the experiments.

  相似文献   

12.
Evolution of a moderate-intensity shock wave and its enhancement after reflection from a rigid surface embedded in a porous medium are studied experimentally. The medium is saturated with a liquid that has bubbles of a soluble gas. A physical mechanism of shock wave enhancement in a saturated porous medium is proposed. Experimental data on the amplitude and velocity of reflected waves are compared with results of theoretical modeling. The process of gas bubble dissolution behind a shock wave is studied.  相似文献   

13.
We present a dynamic model of immiscible two-phase flow in a network representation of a porous medium. The model is based on the governing equations describing two-phase flow in porous media, and can handle both drainage, imbibition, and steady-state displacement. Dynamic wetting layers in corners of the pore space are incorporated, with focus on modeling resistivity measurements on saturated rocks at different capillary numbers. The flow simulations are performed on a realistic network of a sandpack which is perfectly water-wet. Our numerical results show saturation profiles for imbibition in agreement with experiments. For free spontaneous imbibition we find that the imbibition rate follows the Washburn relation, i.e., the water saturation increases proportionally to the square root of time. We also reproduce rate effects in the resistivity index for drainage and imbibition.  相似文献   

14.
As a typical multiphase fluid flow process, drainage in porous media is of fundamental interest both in nature and in industrial applications. During drainage processes in unsaturated soils and porous media in general, saturated regions, or clusters, in which a liquid phase fully occupies the pore space between solid grains, affect the relative permeability and effective stress of the system. Here, we experimentally study drainage processes in unsaturated granular media as a model porous system. The distribution of saturated clusters is analysed by optical imaging under different drainage conditions, with pore-scale information from Voronoi and Delaunay tessellation used to characterise the topology of saturated cluster distributions. By employing statistical analyses, we describe the observed spatial and temporal evolution of multiphase flow and fluid entrapment in granular media. Results indicate that the distributions of both the crystallised cell size and pore size are positively correlated to the spatial and temporal distribution of saturated cluster sizes. The saturated cluster size is found to follow a lognormal distribution, in which the generalised Bond number (\( Bo^{*} \)) correlates negatively to the scale parameter (μ) and positively to the shape parameter (σ). With further consideration of the total surface energy obtained based on liquid–air interfaces, we were able to include additional grain-scale information in the constitutive modelling of unsaturated soils using both the degree of saturation and generalised Bond number. These findings can be used to connect pore-scale behaviour with overall hydro-mechanical characteristics in granular systems.  相似文献   

15.
The stability of the steady-state flow regimes of a liquid with dissolved gas in a porous medium is investigated in the region of the saturation pressure. It is shown that under certain conditions periodic and stochastic self-oscillations caused by the accumulation in the porous medium and subsequent entrainment of the very small gas bubbles formed as a result of pressure reduction may arise. Experimental data that confirmed the theoretical results are presented. Ufa. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 2, pp. 66–73, March–April, 1994.  相似文献   

16.
The mixture theory is employed to the analysis of surface-wave propagation in a porous medium saturated by two compressible and viscous fluids (liquid and gas). A linear isothermal dynamic model is implemented which takes into account the interaction between the pore fluids and the solid phase of the porous material through viscous dissipation. In such unsaturated cases, the dispersion equations of Rayleigh and Love waves are derived respectively. Two situations for the Love waves are discussed in detail: (a) an elastic layer lying over an unsaturated porous half-space and (b) an unsaturated porous layer lying over an elastic half-space. The wave analysis indicates that, to the three compressional waves discovered in the unsaturated porous medium, there also correspond three Rayleigh wave modes (R1, R2, and R3 waves) propagating along its free surface. The numerical results demonstrate a significant dependence of wave velocities and attenuation coefficients of the Rayleigh and Love waves on the saturation degree, excitation frequency and intrinsic permeability. The cut-off frequency of the high order mode of Love waves is also found to be dependent on the saturation degree.  相似文献   

17.
Co-injection of water with CO2 is an effective scheme to control initial gas saturation in porous media. A fractional flow rate of water of approximately 5–10% is sufficient to reduce initial gas saturations. After water injection following the co-injection, most of the gas injected in the porous media is trapped by capillarity with a low fractional volume of migrating gas. In this study, we first derive an analytical model to predict the gas saturation levels for co-injection with water. The initial gas saturation is controlled by the fractional flow ratio in the co-injection process. Next, we experimentally investigate the effect of initial gas saturation on residual gas saturation at capillary trapping by co-injecting gas and water followed by pure water injection, using a water and nitrogen system at room temperature. Depending on relative permeability, initial gas saturation is reduced by co-injection of water. If the initial saturation in the Berea sandstone core is controlled at 20–40%, most of the gas is trapped by capillarity, and less than 20% of the gas with respect to the injected gas volume is migrated by water injection. In the packed bed of Toyoura standard sand, the initial gas saturation is approximately 20% for a wide range of gas with a fractional flow rate from 0.50 to 0.95. The residual gas saturation for these conditions is approximately 15%. Less than approximately 25% of the gas migrates by water injection. The amount of water required for co-injection systems is estimated on the basis of the analytical model and experimental results.  相似文献   

18.
基于描述含液颗粒材料介观结构的Voronoi 胞元模型和离散颗粒集合体与多孔连续体间的介-宏观均匀化过程, 定义饱和与非饱和多孔介质有效应力. 导出了计及孔隙液压引起之颗粒体积变形的饱和多孔介质广义有效应力. 用以定义广义有效应力的Biot 系数不仅依赖于颗粒材料的多孔连续体固体骨架及单个固体颗粒的体积模量(材料参数),同时与固体骨架当前平均广义有效应力及单个固体颗粒的体积应变(状态量) 有关. 提出了描述非饱和多孔介质中非混和固体颗粒、孔隙液体和气体等三相相互作用的具介观结构的Voronoi 胞元模型.具体考虑在低饱和度下双联(binary bond) 模式的摆动(pendular) 液桥系统介观结构. 导出了基于介观水力-力学模型的非饱和多孔介质的各向异性有效应力张量与有效压力张量. 考虑非饱和多孔介质Voronoi 胞元模型介观结构的各向同性情况,得到了与非饱和多孔连续体理论中唯象地假定的标量有效压力相同的有效压力形式.但本文定义的与确定非饱和多孔介质有效应力和有效压力相关联的Bishop 参数由基于三相介观水力-力学模型, 作为饱和度、孔隙度和介观结构参数的函数导出,而非唯象假定.   相似文献   

19.
Pore-Network Modeling of Isothermal Drying in Porous Media   总被引:1,自引:0,他引:1  
In this paper we present numerical results obtained with a pore-network model for the drying of porous media that accounts for various processes at the pore scale. These include mass transfer by advection and diffusion in the gas phase, viscous flow in the liquid and gas phases and capillary effects at the liquid--gas interface. We extend our work by studying the effect of capillarity-induced flow in macroscopic liquid films that form at the pore walls as the liquid--gas interface recedes. A mathematical model that accounts for the effect of films on the drying rates and phase distribution patterns is presented. It is shown that film flow is a major transport mechanism in the drying of porous materials, its effect being dominant when capillarity controls the process, which is the case in typical applications.  相似文献   

20.
The approach proposed by Podil'chuk [1] is used to derive a system of equations of motion for saturated porous media, allowance being made for the mutual influence of the solid, liquid, and gas phases. The permeabilities of the anisotropic porous medium are assumed to depend on the direction. It is shown that when there are no gas phases and the liquid is incompressible the system of equations reduces to the general equations of the theory of elasticity of an anisotropic body with fictitious stress components. For a porous medium saturated with liquid, the relationships between the permeabilities and the anisotropy constants are obtained. The motion of liquid in an elastic porous medium in the form of an orthotropic cylindrical region with a cavity in the form of a circular cylinder is considered as an example.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 82–87, July–August, 1981.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号