首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Monte Carlo模拟研究高分子单链在基体中扩散的拓扑效应   总被引:1,自引:0,他引:1  
高分子流体的性质同高分子的链结构及其动力学行为密切相关. 在高分子共混物中,共混组分的性质不仅依赖于自身的拓扑结构,还受到其它组分分子拓扑的影响. 本文中采用基于格子模型的Monte Carlo模拟方法研究了在高分子基体中扩散的4种不同拓扑组合(环形或线形高分子链)体系中目标单链的静态和动态性质. 结果发现,环形目标单链的性质受基体分子拓扑结构的影响要大于线形目标单链;其中环/线这一拓扑组合中目标单链的扩散机理相比其本体已经发生了较大改变,链末端在其中起了重要作用. 此外,我们对引起这一现象出现的可能原因做了分析.  相似文献   

2.
提出了剪切流中高分子链在微通道内的迁移机制.该机制采用珠-簧链模型表示高分子链,高分子链受剪切作用而被拉伸,相邻珠子之间的流体力学相互作用产生了对称的扰动流场,由于在通道壁面附近对称的流场被破坏,壁面与高分子链间的流体力学相互作用使高分子远离壁面,在强受限时,这种壁面诱导的流体力学相互作用会被屏蔽掉.利用耗散粒子动力学数值模拟了高分子链在微通道压力流中的迁移行为.数值模拟结果表明,在受限较弱时,高分子链向远离壁面的方向迁移,并随着流场增强,远离壁面的趋势越强;在受限较强时,高分子链不会发生远离壁面的行为.实验研究了长链高分子λ-DNA在壁面附近的迁移行为,实验结果及模拟结果与迁移机制预测的结果相吻合,验证了迁移机制的正确性.高分子链浓度会影响高分子链的迁移行为,当高分子链浓度较大时,高分子链在通道宽度方向不会发生迁移现象,意味着随着浓度的增大,壁面与高分子链间的流体力学相互作用会逐渐被屏蔽.  相似文献   

3.
采用分子动力学模拟的方法研究了长短链二元线形高分子共混熔体在平衡态下的结构、动力学性质以及黏度.结果表明:共混对组分的结构性质没有影响,共混体系中2组分各自的均方回转半径以及均方末端距均与单分散体系中相同;共混显著地影响动力学性质,即长链在共混体系中的扩散和松弛会加快,相反,短链的扩散和松弛则会变慢;另外,该共混体系的黏度符合简单的线性叠加.  相似文献   

4.
采用非平衡态分子动力学模拟研究了剪切场下棒状纳米粒子对高分子基体的结构、 动力学和流变性质的影响. 通过比较多种体积分数(0.8%~10%)的纳米复合物及纯熔体的模拟结果发现, 随着纳米粒子的增加, 高分子链的扩散和松弛逐渐受到抑制, 而链尺寸几乎保持不变. 从Weissenberg number(Wi)角度看, 在剪切流场下, 高分子链的结构性质(如归一化的均方回转半径、 回转张量和取向抑制参数)几乎与纳米粒子的体积分数无关, 而高分子链的Tumbling运动受到抑制. 研究还发现, 纳米复合物与纯熔体的剪切黏度曲线趋势基本一致, 即Wi=1将曲线分为平台区和剪切变稀区. 纳米棒的加入仅定量地改变了流体的剪切黏度.  相似文献   

5.
光散射技术是高分子领域中重要的表征手段之一.静态光散射和动态光散射的结合能够获得丰富的关于高分子的信息,如重均分子量、回转半径、第二维里系数、流体力学半径、尺寸分布、分子链构象等.除合成高分子外,光散射技术同样适用于研究生物大分子、微生物、胶体、纳米粒子、病毒、囊泡等在溶液或悬浮液中的行为.本综述重点介绍稀溶液中静态光...  相似文献   

6.
高分子在受限稀溶液中的结构和动力学性质   总被引:3,自引:3,他引:0  
利用平衡态及非平衡态耗散粒子动力学模拟方法, 分别研究了平衡态和流场作用下受限高分子在稀溶液中的链结构和动力学. 采用没有滑移和密度涨落的边界条件模拟纳米管道环境, 进而研究了高分子回转半径和扩散系数对受限强度及高分子与溶剂间相互作用的依赖关系. 在非平衡态模拟中, 分别考虑了Poiseuille和Couette两种流场. 研究发现, 在这两种流场作用下, 高分子都随着溶剂与高分子排斥作用的降低而向管道中心迁移. 在强流场下, 在Poiseuille流场中高分子密度呈现出双峰分布, 而在Couette流场中则呈现为单峰分布.  相似文献   

7.
以梳形高分子为纽带,基于粗粒化分子动力学模拟方法,研究了线形、梳形和星形拓扑结构高分子的静态和动态性质,以揭示稀溶液中高分子链行为与链拓扑结构依赖关系的一般性规律.研究结果表明,随着线形-梳形-星形的链拓扑结构转变,回转半径的标度关系由仅依赖分子聚合度转变为同时依赖链聚合度与臂数或侧链数.分析了星形高分子和梳形高分子的静态和动态性质的特征规律.星形高分子的臂数增加使其尺寸迅速减小,形状则由长椭球形转变为类球形,且扩散系数也随之增加;其均方回转半径(〈R_g〉)和扩散系数(D)与分子聚合度(N)及臂数(f)的标度规律为〈R_g〉~N~(0.581)f~(-0.402),D~N~(-0.763)f~(0.227).梳形高分子的静态与动态性质与分子聚合度及侧链数的依赖关系为〈R_g〉~N~(0.597)f~(-0.212)(每个支化点只有一条侧链)和〈R_g〉~N~(0.599)f~(-0.316)(每个支化点有多条侧链).  相似文献   

8.
第二维利系数(A_2)是表征高分子链段间和高分子溶剂分子间相互作用的参数。对于环形高分子的第二维利系数,最早Casassa曾做过计算。利用“双接触”模型,Casassa计算了环形高分子的第二维利系数(A_(2r))为A_(2r)=(N_αβN~2/2M~2)[1-C_z O(z~2)]式中M为聚合物的分子量,N_α为Avogadro常数,N为高分子链段数,β为表征链段对排斥体积的二元集团积分,Z为排斥体积参数。式中系数C对环形或线形分子数值不同。  相似文献   

9.
周嘉嘉 《高分子学报》2016,(8):1021-1029
耗散粒子动力学是一种粗粒化的计算模拟方法,在微米和纳米流体力学中有着广泛的应用.由于界面在微小体积流体中的重要性,边界条件的选取在微米和纳米流体的研究中起到了关键性的作用.我们简单地介绍了耗散粒子动力学的模拟方法,并以此为基础,介绍了能够实现纳维边界条件的可调滑移长度的边界条件模拟方法.通过条纹状图案修饰的超疏水表面的流体力学行为研究,和高分子链在微米纳米流体器件中的运动研究2个例子,耗散粒子动力学结合纳维边界条件的模拟方法的实用性和可靠性得到了证实.  相似文献   

10.
表面活性剂与高分子链混合体系的模拟   总被引:3,自引:0,他引:3  
计算机模拟了高分子链对表面活性剂胶束形成过程的影响,以及高分子链构象性质随胶束化过程的变化.结果表明,当高分子链与表面活性剂之间的相互作用强度超过临界值后,高分子链的存在有利于表面活性剂胶束的形成.临界聚集浓度(CAC)与临界胶束浓度(CMC)的比值CAC/CMC随高分子链长的增大和相互吸引作用的增强而减小.在CAC之前,高分子链与表面活性剂分子只有动态的聚集;但在CAC之后,表面活性剂胶束随表面活性剂浓度X的增加而增大,并静态地吸附在高分子链上,形成表面活性剂/高分子聚集体.随着表面活性剂分子的加入,高分子链的均方末端距和平均非球形因子先保持恒定;从X略小于CAC开始, 和快速减小,至极小值后又逐渐增大.模拟结果支持高分子链包裹在胶束表面的实验模型.  相似文献   

11.
We have studied the effect of chain topology on the structural properties and diffusion of polymers in a dilute solution in a good solvent. Specifically, we have used three different simulation techniques to compare the chain size and diffusion coefficient of linear and ring polymers in solution. The polymer chain is modeled using a bead-spring representation. The solvent is modeled using three different techniques: molecular dynamics (MD) simulations with a particulate solvent in which hydrodynamic interactions are accounted through the intermolecular interactions, multiparticle collision dynamics (MPCD) with a point particle solvent which has stochastic interactions with the polymer, and the lattice Boltzmann method in which the polymer chains are coupled to the lattice fluid through friction. Our results show that the three methods give quantitatively similar results for the effect of chain topology on the conformation and diffusion behavior of the polymer chain in a good solvent. The ratio of diffusivities of ring and linear polymers is observed to be close to that predicted by perturbation calculations based on the Kirkwood hydrodynamic theory.  相似文献   

12.
Atomistic molecular dynamics simulations of ring‐linear polyethylene blends are employed to understand the relationship between chain conformational structure and the melt dynamics of these blends. As observed in previous studies, this study confirms that ring polymers in pure melts do not exhibit screened excluded volume interactions, contrary to linear polymers. Moreover, the average molecular shapes of the rings are quite distinct from both swollen and ideal ring polymers under theta conditions, and instead rather resemble branched polymers with screened binary excluded volume interactions, e.g., percolation clusters. Upon adding linear chains to a melt of pure rings, we find significant swelling of the rings and a corresponding shape change that is qualitatively similar to dissolving rings in a small molecule good solvent. This swelling, arising from altered self‐excluded volume interactions, translates into a large decrease in ring diffusivity, an effect that becomes more amplified when the polymer melt is entangled.  相似文献   

13.
In a topologically constraining environment the size of a flexible nonconcatenated ring polymer (macrocycles) and its dynamics are known to differ from that of linear polymers. Hence, the diffusion coefficient of ring polymers can be expected to be different from linear chains. We present here scaling arguments for the concentration and molecular weight dependence of self‐diffusion coefficient of ring polymers in semidilute solutions, and show that contrary to expectations these scaling relations are identical to what is known for linear polymers. At higher concentrations excluded volume interactions arising from possibilities of segmental overlap can become effective for large ring polymers. In this regime the diffusion coefficient of large ring polymers shows a relatively weaker dependence on concentration and molecular weight. ©2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 2370–2379, 2008  相似文献   

14.
A numerical method to simulate the dynamics of polymer solutions in confined geometries has been implemented and tested. The method combines a fluctuating lattice-Boltzmann model of the solvent [Ladd, Phys. Rev. Lett. 70, 1339 (1993)] with a point-particle model of the polymer chains. A friction term couples the monomers to the fluid [Ahlrichs and Dunweg, J. Chem. Phys. 111, 8225 (1999)], providing both the hydrodynamic interactions between the monomers and the correlated random forces. The coupled equations for particles and fluid are solved on an inertial time scale, which proves to be surprisingly simple and efficient, avoiding the costly linear algebra associated with Brownian dynamics. Complex confined geometries can be represented by a straightforward mapping of the boundary surfaces onto a regular three-dimensional grid. The hydrodynamic interactions between monomers are shown to compare well with solutions of the Stokes equations down to distances of the order of the grid spacing. Numerical results are presented for the radius of gyration, end-to-end distance, and diffusion coefficient of an isolated polymer chain, ranging from 16 to 1024 monomers in length. The simulations are in excellent agreement with renormalization group calculations for an excluded volume chain. We show that hydrodynamic interactions in large polymers can be systematically coarse-grained to substantially reduce the computational cost of the simulation. Finally, we examine the effects of confinement and flow on the polymer distribution and diffusion constant in a narrow channel. Our results support the qualitative conclusions of recent Brownian dynamics simulations of confined polymers [Jendrejack et al., J. Chem. Phys. 119, 1165 (2003) and Jendrejack et al., J. Chem. Phys. 120, 2513 (2004)].  相似文献   

15.
We calculate the pair diffusion coefficient D(r) as a function of the distance r between two hard sphere particles in a dense monodisperse fluid. The distance-dependent pair diffusion coefficient describes the hydrodynamic interactions between particles in a fluid that are central to theories of polymer and colloid dynamics. We determine D(r) from the propagators (Green's functions) of particle pairs obtained from molecular dynamics simulations. At distances exceeding ~3 molecular diameters, the calculated pair diffusion coefficients are in excellent agreement with predictions from exact macroscopic hydrodynamic theory for large Brownian particles suspended in a solvent bath, as well as the Oseen approximation. However, the asymptotic 1/r distance dependence of D(r) associated with hydrodynamic effects emerges only after the pair distance dynamics has been followed for relatively long times, indicating non-negligible memory effects in the pair diffusion at short times. Deviations of the calculated D(r) from the hydrodynamic models at short distances r reflect the underlying many-body fluid structure, and are found to be correlated to differences in the local available volume. The procedure used here to determine the pair diffusion coefficients can also be used for single-particle diffusion in confinement with spherical symmetry.  相似文献   

16.
Recently a microscopic theory for the dynamics of suspensions of long thin rigid rods was presented, confirming and expanding the well-known theory by Doi and Edwards [The Theory of Polymer Dynamics (Clarendon, Oxford, 1986)] and Kuzuu [J. Phys. Soc. Jpn. 52, 3486 (1983)]. Here this theory is put to the test by comparing it against computer simulations. A Brownian dynamics simulation program was developed to follow the dynamics of the rods, with a length over a diameter ratio of 60, on the Smoluchowski time scale. The model accounts for excluded volume interactions between rods, but neglects hydrodynamic interactions. The self-rotational diffusion coefficients D(r)(phi) of the rods were calculated by standard methods and by a new, more efficient method based on calculating average restoring torques. Collective decay of orientational order was calculated by means of equilibrium and nonequilibrium simulations. Our results show that, for the currently accessible volume fractions, the decay times in both cases are virtually identical. Moreover, the observed decay of diffusion coefficients with volume fraction is much quicker than predicted by the theory, which is attributed to an oversimplification of dynamic correlations in the theory.  相似文献   

17.
Kholodenko's theory of semiflexible polymer chains, the conformation and properties of which are obtained from the Dirac propagator, shows applicability to dilute solutions of semiflexible polymers of arbitrary persistence and contour lengths by calculating the static scattering function and the squared end‐to‐end distance of the polymer chain. In the present work, the theory is extended and applied to obtain the intrinsic viscosity with consideration of hydrodynamic interactions. The intrinsic viscosity formula is derived as function of chain length and persistence length. The hydrodynamic interactions are also taken into account following the Kirkwood and Riseman scheme. From this calculation, we obtain the general expression for the intrinsic viscosity and diffusion coefficients covering the whole range of chain flexibilities without confusion with the excluded volume effects. Calculated limiting values of hydrodynamical observables are in complete agreement with those known for random coils and rigid rods.  相似文献   

18.
Based on the optimized Rouse-Zimm (ORZ) approximation to the Kirkwood diffusion equation, we investigate the effects of excluded volume interactions on the single chain dynamics. By incorporating the nonuniformly expanded moments of interbead distances into the expressions for the diffusion and structure matrices appearing in the ORZ diffusion equation, we obtain the general relaxation spectrum for flexible chains that is valid over the range from theta; solvents to good solvents. The present theory involves four parameters: the Kuhn statistical length b(0), the bead number N, the excluded volume parameter z, and the hydrodynamic interaction parameter h(*). These model parameters are determined from structural data of polymers with the aid of the quasi-two-parameter theory. The set of relaxation times of ORZ normal modes calculated with these bead-and-spring model parameters enables the theoretical prediction of various frictional and dynamical properties of polymers within a unified framework. The present ORZ theory generalizes the Ptitsyn-Eizner-type approaches by incorporating the nonuniform chain expansion effect into the structure matrix as well as the diffusion matrix.  相似文献   

19.
Structure and transport properties of dendrimers in dilute solution are studied with the aid of Brownian dynamics simulations. To investigate the effect of molecular topology on the properties, linear chain, star, and dendrimer molecules of comparable molecular weights are studied. A bead-spring chain model with finitely extensible springs and fluctuating hydrodynamic interactions is used to represent polymer molecules under Theta conditions. Structural properties as well as the diffusivity and zero-shear-rate intrinsic viscosity of polymers with varied degrees of branching are analyzed. Results for the free-draining case are compared to and found in very good agreement with the Rouse model predictions. Translational diffusivity is evaluated and the difference between the short-time and long-time behavior due to dynamic correlations is observed. Incorporation of hydrodynamic interactions is found to be sufficient to reproduce the maximum in the intrinsic viscosity versus molecular weight observed experimentally for dendrimers. Results of the nonequilibrium Brownian dynamics simulations of dendrimers and linear chain polymers subjected to a planar shear flow in a wide range of strain rates are also reported. The flow-induced molecular deformation of molecules is found to decrease hydrodynamic interactions and lead to the appearance of shear thickening. Further, branching is found to suppress flow-induced molecular alignment and deformation.  相似文献   

20.
高分子动力学的单链模型   总被引:1,自引:0,他引:1  
高分子单链模型是高分子稀溶液理论研究的基本模型.对其进行深入地分析,不仅有助于解决高分子稀溶液体系中溶液黏度和分子链扩散等基本问题,而且能够增进人们对高分子链结构与溶液性质间关联性的理解.虽然基于经典连续性介质力学的流体动力学理论可以定性,甚至半定量地获得稀溶液的一些重要性质,但是,随着科学技术的发展,人们从分子水平上建立了许多描述高分子稀溶液性质的模型和理论,期望能够定量地描述高分子稀溶液的性质.本文以高分子稀溶液中3个典型的单链模型为例(包括:不含流体力学相互作用的Rouse模型、含二体流体力学相互作用的Zimm模型和含多体流体力学相互作用的部分穿透球模型),综述高分子稀溶液的重要性质,并详细地给出其动力学方程的推导过程及其重要的研究进展.特别是,对于Rouse模型,本文还将其预言结果拓展到了短链高分子流体体系;此外,还介绍了这一领域的关键科学问题、发展前景和研究方向.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号