首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pyrocatechol is immobilized on cellulose via ---NH---CH2---CH2---NH---SO2---C6H4---N=N--- linker and the resulting macromolecular chelator characterized by IR, TGA, CPMAS 13C NMR and elemental analyses. It has been used for enrichment of Cu(II), Zn(II), Fe(III), Ni(II), Co(II), Cd(II) and Pb(II) prior to their determination by flame atomic absorption spectrometry (FAAS). The pH ranges for quantitative sorption (98.0–99.4%) are 4.0–7.0, 5.0–6.0, 3.0–4.0, 5.0–7.0, 5.0–8.0, 7.0–8.0 and 4.0–5.0, respectively. The desorption was found quantitative with 0.5 mol dm−3 HCl/HNO3 (for Pb). The sorption capacity of the matrix for the seven metal ions has been found in the range 85.3–186.2 μmol g−1. The optimum flow rate of metal ion solution for quantitative sorption of metal onto pyrocatechol functionalized cellulose as determined by column method, is 2–6 cm3 min−1, whereas for desorption it is 2–4 cm3 min−1. The tolerance limits for NaCl, NaBr, NaI, NaNO3, Na2SO4, Na3PO4, humic acid, EDTA, ascorbic acid, citric acid, sodium tartrate, Ca(II) and Mg(II) in the sorption of all the seven metal ions are reported. Ascorbic acid is tolerable up to 0.8 mmol dm−3 with Cu and Pb where as sodium tartrate does not interfere up to 0.6 mmol dm−3 with Pb. There is no interference of NaBr, NaCl and NaNO3 up to a concentration of 0.5 mol dm−3, in the sorption of Cu(II), Cd(II) and Fe(III) on to the chelating cellulose matrix The preconcentration factors are between 75 and 300 and t1/2 values ≤5 min for all the metal ions. Simultaneous sorption of Cu, Zn, Ni and Co is possible at pH 5.0 if their total concentration does not exceed lowest sorption capacity. The present matrix coupled with FAAS has been used to enrich and determine the seven metal ions in river and tap water samples (relative standard deviation (R.S.D.) 1.05–7.20%) and synthetic certified water sample SLRS-4 (NRC, Canada) with R.S.D. 2.03%. The cobalt present in pharmaceutical vitamin tablets was also preconcentrated on the modified cellulose and determined by FAAS (R.S.D. 1.87%).  相似文献   

2.
A simple and rapid flow injection (FI) method is reported for the determination of phosphate (as molybdate reactive P) in freshwaters based on luminol chemiluminescence (CL) detection. The molybdophosphoric heteropoly acid formed by phosphate and ammonium molybdate in acidic conditions generated chemiluminescence emission via the oxidation of luminol. The detection limit (3× standard deviation of blank) was 0.03 μg P l−1 (1.0 nM), with a sample throughput of 180 h−1. The calibration graph was linear over the range 0.032–3.26 μg P l−1 (r2=0.9880) with relative standard deviations (n=4) in the range 1.2–4.7%. Interfering cations (Ca(II), Mg(II), Ni(II), Zn(II), Cu(II), Co(II), Fe(II) and Fe(III)) were removed by passing the sample through an in-line iminodiacetate chelating column. Silicate interference (at 5 mg Si l−1) was effectively masked by the addition of tartaric acid and other common anions (Cl, SO42−, HCO3, NO3 and NO2) did not interfere at their maximum admissible concentrations in freshwaters. The method was applied to freshwater samples and the results (26.1±1.1–62.0±0.4 μg P l−1) were not significantly different (P=0.05) from results obtained using a segmented flow analyser method with spectrophotometric detection (24.4±4.45–84.0±16.0 μg P l−1).  相似文献   

3.
The H-point standard addition method (HPSAM) for simultaneous determination of Fe(II) and Fe(III) is described. The method is based on the difference in the rate of complex formation of iron in two different oxidation states with Gallic acid (GA) at pH 5. Fe(II) and Fe(III) can be determined in the range of 0.02–4.50 μg ml−1 and 0.05–5.00 μg ml−1, respectively, with satisfactory accuracy and precision in the presence of other metal ions, which rapidly form complexes with GA under working conditions. The proposed method was successfully applied for simultaneous determination of Fe(II) and Fe(III) in several environmental and synthetic samples with different concentration ratios of Fe(II) and Fe(III).  相似文献   

4.
Goswami A  Singh AK  Venkataramani B 《Talanta》2003,60(6):1141-1154
The silica gel modified with (3-aminopropyl-triethoxysilane) was reacted with 5-formyl-8-hydroxyquinoline (FHOQx) to anchor 8-quinolinol ligand on the silica gel. It was characterised with cross polarisation magic angle spinning (CPMAS) NMR and diffuse reflectance infrared Fourier transformation (DRIFT) spectroscopy and used for the preconcentration of Cu(II), Pb(II), Ni(II), Fe(III), Cd(II), Zn(II) and Co(II) prior to their determination by flame atomic absorption spectrometry. The surface area of the modified silica gel has been found to be 227 m2 g−1 and the two pKa values as 3.8 and 8.0. The optimum pH ranges for quantitative sorption are 4.0–7.0, 4.5–7.0, 3.0–6.0, 5.0–8.0, 5.0–8.0, 5.0–8.0 and 4.0–7.0 for Cu, Pb, Fe, Zn, Co, Ni and Cd, respectively. All the metals can be desorbed with 2.5 mol l−1 HCl or HNO3. The sorption capacity for these metal ions is in range of 92–448.0 μmol g−1 and follows the order Cd3, NaCl, NaBr, Na2SO4 and Na3PO4, glycine, sodium citrate, EDTA, humic acid and cations Ca(II), Mg(II), Mn(II) and Cr(III) in the sorption of all the seven metal ions are reported. The preconcentration factors are 150, 250, 200, 300, 250, 300 and 200 for Cd, Co, Zn, Cu, Pb, Fe and Ni, respectively and t1/2 values <1 min except for Ni. The 95% extraction by batch method takes ≤25 min. The simultaneous enrichment and determination of all the metals are possible if the total load of the metal ions is less than sorption capacity. In river water samples all these metal ions were enriched with the present ligand anchored silica gel and determined with flame atomic absorption spectrometer (R.S.D.≤6.4%). Cobalt contents of pharmaceutical samples (vitamin tablet) were preconcentrated with the present chelating silica gel and estimated by flame AAS, with R.S.D.1.4%. The results are in the good agreement with the certified value, 1.99 μg g−1 of the tablets. Iron and copper in certified reference materials (synthetic) SLRS-4 and SLEW-3 have been enriched with the modified silica gel and estimated with R.S.D.<5%.  相似文献   

5.
A reversed flow injection colorimetric procedure for determining iron(III) at the μg level was proposed. It is based on the reaction between iron(III) with norfloxacin (NRF) in 0.07 mol l−1 ammonium sulfate solution, resulting in an intense yellow complex with a suitable absorption at 435 nm. Optimum conditions for determining iron(III) were investigated by univariate method. The method involved injection of a 150 μl of 0.04% w/v colorimetric reagent solution into a merged streams of sample and/or standard solution containing iron(III) and 0.07 mol l−1 ammonium sulfate in sulfuric acid (pH 3.5) solution which was then passed through a single bead string reactor. Subsequently the absorbance as peak height was monitored at 435 nm. Beer's law obeyed over the range of 0.2–1.4 μg ml−1 iron(III). The method has been applied to the determination of total iron in water samples digested with HNO3–H2O2 (1:9 v/v). Detection limit (3σ) was 0.01 μg ml−1 the sample through of 86 h−1 and the coefficient of variation of 1.77% (n=12) for 1 μg ml−1 Fe(III) were achieved with the recovery of the spiked Fe(III) of 92.6–99.8%.  相似文献   

6.
Matoso E  Kubota LT  Cadore S 《Talanta》2003,60(6):1105-1111
An analytical method using silica gel chemically modified with zirconium (IV) phosphate for preconcentration of lead and copper, in a column system, and their sequential determination by flame atomic absorption spectrometry (FAAS), was developed. Sample solutions are passed through a glass column packed with 100 mg of the sorbent material, at pH 4.5, and lead and copper are eluted with 1.0 mol l−1 HNO3 at a flow rate of 2.0 ml min−1. The extraction of copper is affected by Fe(II), Mn(II), Zn(II), Ni(II) and Co(II) while only Fe(II) interferes in the lead determination. These interferences may be overcome with an appropriate addition of a KI or NaF solution. An enrichment factor of 30 was obtained for both metals. While the limits of detection (3σ) were 6.1 and 1.1 μg l−1, for Pb and Cu, respectively, the limits of determination were 16.7 and 3.3 μg l−1. The precision expressed as relative standard deviation (R.S.D.) obtained for 3.3 μg l−1 of Cu and 16.7 μg l−1 of Pb were 4.3 and 4.7%, respectively, calculated from ten measurements. The proposed method was evaluated with reference material and was applied for the determination of lead and copper in industrial and river waters.  相似文献   

7.
Costa AC  Teixeira LS  Ferreira SL 《Talanta》1995,42(12):1973-1978
In the present paper, a new procedure using Pyrocatechol Violet (PCV) for the determination of tin in copper-based alloys is proposed. The use of HEDTA as masking agent allowed tin to be determined in the presence of large amounts of copper, without any separation procedure. The method is more selective than previous methods. Cetyltrimethylammonium bromide (CTAB) and Tween-20 are used to increase the stability of the system.

The method can be applied directly to an acidic solution of Sn(IV) in the range 2.0–60.0 μg with a final volume of 50 ml. The pH is adjusted to 2.0 ± 0.2 with glycine buffer and, after 30 min, the absorbance is measured at 660 nm. Al(III), Cd(II), Co(II), Mg(II), Ca(II), Mn(II), Ni(II) and Pb(II) do not interfere at the 500 mg level; 20 000 μg of Cu(II) and 400 μg of NaCl can be present. The interference at 100 μg of Fe(III) can be masked with ascorbic acid. Bi(III), Sb(V), Ti(IV), Mo(VI), EDTA, tartrate, citrate and iodide interfere. The proposed method was used for tin determination in several copper-based alloys and a comparison of the analytical results with certified values indicates that the procedure provides accurate and precise results.  相似文献   


8.
For the first time a new, sensitive, and simple bead injection spectroscopy–flow injection analysis (BIS–FIA) system with spectrofluorimetric detection is described for the sequential determination of two metals. The sensor is based on the alternate use of two carriers and a commercially available flow cell (Hellma 176-QS). The flow cell is filled by injecting in the flow system 500 μl of a homogeneous bead suspension of an appropriate solid support (Sephadex QAE A-25) previously loaded with the fluorogenic reagent morin (2′,3,4′,5,7-pentahydroxyflavone). A sequential reaction of Al(III) and Be(II) with morin (immobilized on beads) to form their fluorescent complexes is performed on the bead sensing support and their respective fluorescence emission monitored, after doing two successive injections from the mixture solution. Firstly, Al(III) could be determined in the sample using 0.5 M NaCl/HCl, pH 6 as carrier. Then, the carrier solution was changed (0.3 M NaCl/NaOH, pH 12) making possible the elution of Al(III) and the restoration of the baseline, then allowing the reaction of Be(II). At the end of the analysis, beads are automatically discarded from the flow cell, by reversing the flow, and transported out of the system. The analytical signals are measured at an excitation wavelength of 440 nm and an emission wavelength of 520 nm. Using a sample volume of 600 μl, the analytical signal showed a very good linearity in the range 0.1–8 ng ml−1 and 0.1–1 μg ml−1 with detection limits of 0.024 ng ml−1 and 0.010 μg ml−1 for Be(II) and Al(III), respectively. R.S.D.s (%) lower than 5% were obtained for both analytes and the selectivity was improved using EDTA as masking reagent. The sensor was satisfactorily applied to the determination of these metals in waters and simulated alloy samples.  相似文献   

9.
This paper describes a method for the simultaneous determination of As(III), Sb(III) and Se(IV) by combining hydride generation and gas phase molecular absorption spectrometry. A system for continuous hydride generation has been designed and developed, based on the use of a double process of gas-liquid separation, and optimal compromise operation conditions for the three compounds have been found. After generation, the hydrides are collected in a liquid nitrogen cryogenic trap, and then evaporated and driven to the flow cell of a diode array spectrophotometer, in which the transient signals over the 190–250 nm wavelength interval are measured. Under the recommended conditions (sample flow: 35 ml min−1, 0.5 M HCl; reductor flow: 4 ml min−1 of 4% NaBH4, solution) linear response ranges above 50 μg 1−1 for As(III), 30 μg 1−1 for Sb(III) and 200 μg 1−1 for Se(IV) are obtained with detection limits of 22 μg 1−1, 15 μg 1−1 and 65 μg 1−1, respectively. Multiwavelength linear regression equations were used for the simultaneous determination of the three elements in different synthetic samples, with good precision and accuracy and to study simultaneously the interference from different chemical species for the three compounds. Results were similar to those obtained by other techniques using hydride generation.  相似文献   

10.
An atomic absorption spectrophotometric method for the determination of trace copper after adsorption of its 1-nitroso-2-naphthol-3,6-disulfonic acid chelate on Ambersorb 572 has been developed. This chelate is adsorbed on the adsorbent in the pH range 1–8. The copper chelate is eluted with 5 ml of 0.1 mol l−1 potassium cyanide and determined by flame atomic absorption spectrometry (FAAS). The selectivity of the proposed procedure was also evaluated. Results show that iron(III), zinc(II), manganese(II) and cobalt(II) at the 50 μg l−1 level and sodium(I), potassium(I), magnesium(II), calcium(II) and aluminium(III) at the 1000 μg l−1 level did not interfere. A high enrichment factor, 200, was obtained. The detection limit (3σ) of copper was 0.34 μg l−1. The precision of the method, evaluated by seven replicate analyses of solutions containing 5 μg of copper was satisfactory and the relative standard deviation was 1.7%. The adsorption of copper onto Ambersorb 572 can formally be described by a Langmuir equation with a maximum adsorption capacity of 14.3 mg g−1 and a binding constant of 0.00444 l mg−1. The accuracy of the method is confirmed by analysing tomatoes leaves (NIST 1573a) and lead base alloy (NBS 53e). The results demonstrated good agreement with the certified values. This procedure was applied to the determination of copper in waters (tap, river and thermal waters), aluminium foil and tea samples.  相似文献   

11.
A new po1y(acrylphenylamidrazone phenylhydrazide) chelating fiber is synthesized from polyacrylonitrile fiber and used for preconcentration and separation of trace Ga(III), In(III), Bi(III), V(V) and Ti(IV) from solution (5–50 ng ml−1 Ti(IV) or V(V) and 50–500 ng ml−1 Ga(III), In (III) or Bi(III) in 1000–100 ml of solution can be enriched quantitatively by 0.15 g of fiber at a 4 ml min−1 flow rate in the pH range 5–7 with recoveries >95%). These ions can be desorbed quantitatively with 20 ml of 4 M hydrochloric acid at 2 ml min−1 from the fiber column. When the fiber which had been treated with concentrated hydrochloric acid and washed with distilled water until neutral was reused eight times, the recoveries of the above ions by enrichment were still >95%. Two-hundred-fold to 10 000-fold excesses of Cu(II), Zn(II), Ca(II), Mn(II), Cr(III), Fe(III), Ba(II) and Al(III) caused little interference in the determination of these ions by inductively coupled plasma-atomic emission spectrometers (ICP-AES). The relative standard deviations for enrichment and determination of 50 ng ml−1 Ga, In or Bi and 10 ng ml−1 V or Ti are in the range 1.2–2.7%. The contents of these ions in real solution samples determined by this method were in agreement with the certified values of the samples with average errors <3.7%.  相似文献   

12.
The proposed method for cyanide determination at the ultratrace level by differential pulse voltammetry is based in the sensitivity enhancement obtained when both Cu(II) and EDTA are present in the background electrolyte. Comparison of the detection limits and linear dynamic ranges using the conventional borate (pH 9.75), and the proposed borate-EDTA–Cu(II) background electrolytes was carried out. Best results have been obtained with the addition of 0.5 mmol l−1 EDTA and 0.02 mmol l−1 of Cu(II), which allow a detection limit of 1.7 μg l−1 CN (65 nmol l−1 — absolute detection limit 34 ng) with a precision better than ±2% for a 40 μg l−1 level. Calibration range extended from detection limit up to 100 μg l−1. Cyclic voltammetry indicates that the measured cyanide peak is obtained when the electrogenerated CuCN adsorbed onto the hanging mercury drop electrode surface, is oxidised at positive going potential scan. The method has been successfully applied to various industrial waste waters such as metal-finishing waste waters, water/sand mixtures from cleaning processes of coke production, leachates from wastes obtained from electrolytic cells of aluminium production, and liquors from gold extraction industry. Results obtained by the proposed method showed good agreement with those obtained by the standard methods (ion-selective potentiometry and the spectrophotometric pyridine method).  相似文献   

13.
Flow injection (FI) and sequential injection (SI) systems with anodic stripping voltammetric detection have been exploited for simultaneous determination of some metals. A pre-plated mercury film on a glassy carbon disc electrode was used as a working electrode in both systems. The same film can be repeatedly applied for at least 50 analysis cycles, thus reducing the mercury consumption and waste. A single line FI voltammetric system using an acetate buffer as a carrier and an electrolyte solution was employed. An injected standard/sample zone was mixed with the buffer in a mixing coil before entering a flow cell. Metal ions were deposited on the working electrode by applying a potential of −1.1 V vs Ag/AgCl reference electrode. The stripping was performed by anodically scanning potential of working electrode to +0.25 V, resulting a voltammogram. Effects of acetate buffer concentration, flow rate and sample volume were investigated. Under the selected condition, detection limits of 1 μg l−1 for Cd(II), 18 μg l−1 for Cu(II), 2 μg l−1 for Pb(II) and 17 μg l−1 for Zn(II) with precisions of 2–5% (n=11) were obtained. The SI voltammetric system was similar to the FI system and using an acetate buffer as a carrier solution. The SI system was operated by a PC via in-house written software and employing an autotitrator as a syringe pump. Standard/sample was aspirated and the zone was then sent to a flow cell for measurement. Detection limits for Cd(II), Cu(II), Pb(II) and Zn(II) were 6, 3, 10 and 470 μg l−1, respectively. Applications to water samples were demonstrated. A homemade UV-digester was used for removing organic matters in the wastewater samples prior to analysis by the proposed voltammetric systems.  相似文献   

14.
Solvent extraction with 8-quinolinol (QN) has been markedly improved by the combined application of ultrasonic irradiation and mixed additives and used for the catalytic determination of vanadium with chlorpromazine in the presence of tartrate. Vanadium in an acidified sample up to 200 ml is extracted twice at pH 3.9–4.3 into two 10-ml portions of CHCl3 with 0.14 M QN, and then back-extracted at pH 11 into 10 ml of 0.01 M NaOH solution. Each extraction time is 10 min. In the back-extraction, recovery of vanadium over 95% was performed by the addition of a mixed solution of KBr, NaBrO3 and HNO3 to the sample and the application of ultrasonic irradiation for 10 (or 5) min. On the other hand, a conventional mechanical shaking without the mixed solution required 60 min for 91% recovery. The proposed method was able to separate vanadium from Ca(II), Mg(II), Al(III), Fe(III), Cu(II), Cr(VI) and NO2, and has been successfully applied to the determination of vanadium in river and tap waters. The detection limit of vanadium was about 0.03 μg l−1.  相似文献   

15.
In the present paper, a solid phase extraction system for separation and preconcentration of nickel (ng g−1) in saline matrices is proposed. It is based on the adsorption of nickel(II) ions onto an Amberlite XAD-2 resin loaded with 1-(2-pyridylazo)-2-naphthol (PAN) reagent. Parameters such as the pH effect on the nickel extraction, the effect of flow rate and sample volume on the extraction, the sorption capacity of the loaded resin, the nickel desorption from the resin and the analytical characteristics of the procedure were studied. The results demonstrate that nickel(II) ions, in the concentration range 0.10–275 μg l−1, and pH 6.0–11.5, contained in a sample volume of 25–250 ml, can be extracted by using 1 g Amberlite XAD-2 resin loaded with PAN reagent. The adsorbed nickel was eluted from the resin by using 5 ml 1 M hydrochloric acid solution. The extractor system has a sorption capacity of 1.87 μmol nickel per g of Amberlite XAD-2 resin loaded with PAN. The precision of the method, evaluated as the R.S.D. obtained after analyzing a series of seven replicates, was 3.9% for nickel in a concentration of 0.20 μg ml−1. The proposed procedure was used for nickel determination in alkaline salts of analytical grade and table salt, using an inductively coupled plasma atomic emission spectroscopy technique (ICP-AES). The standard addition technique was used and the recoveries obtained revealed that the proposed procedure shows good accuracy.  相似文献   

16.
An analytical method for separation and pre-concentration of lead in seawater for determination by inductively coupled plasma optical emission spectrometry has been investigated. Lead was retained in the solid phase (0.5 g) composed of co-precipitated naphthalene and alizarin red. The solid phase quantitatively sorbs Pb(II) at pH 8–9, and the metal was eluted using 5.0 ml of 2 mol l−1 nitric acid. The effect of NaCl, KCl, BaCl2, CaCl2, Na2SO4, MgCl2 and Na3PO4 on the sorption of Pb(II) in the solid phase was studied. A set of solutions containing varying amounts of electrolytes (0.5; 1.0; 3.0 and 5.0% m/v) with Pb (50 μg) was prepared and the recommended procedure applied. The Na3PO4 was found to interfere; the other electrolytes did not interfere up to 5% m/v. A pre-concentration factor of 40 was obtained in this analytical procedure. The limit of detection and limit of quantification for Pb(II) were 53 and 176 μg l−1, respectively. Lead was determined in seawater samples collected in Salvador city, Bahia, Brazil. The precision, expressed as R.S.D., was 1.8–4.6%, and the recovery of lead added to seawater samples was 95–97%.  相似文献   

17.
A simple GF-AAS method for speciation analysis of chromium in mineral waters and salinas was developed. Cr(VI) species were separated from Cr(III) by solid-phase extraction with APDC (ammonium pyrrolidinedithiocarbamate). The APDC complexes were formed in the sample solution under proper conditions, adsorbed on Diaion HP-2MG resin and the resin was separated from the sample. After elution with concentrated nitric acid Cr(VI) was determined by GF-AAS. Total chromium was determined by GF-AAS directly in the sample and Cr(III) concentration was calculated as the difference between those results.

The detection limit of the method defined as 3 s of background variation was 0.03 μg l−1 for Cr(VI) and 0.3 μg l−1 for total chromium. RSD for Cr(VI) determination at the concentration of 0.14 μg l−1 was 9%, and for total chromium at the concentration of 5.6 μg l−1 was 5%. The recovery of Cr(VI) was in the range of 94–100%, dependently on type of the sample.

The investigation of recovery of the spiked Cr(VI) showed that at concentration levels near 1 μg l−1 and lower recovery may be reduced significantly even by pure reagents that seem to be free from any reductants.  相似文献   


18.
A simple procedure was developed for the direct determination of As(III) and As(V) in water samples by flow injection hydride generation atomic absorption spectrometry (FI–HG–AAS), without pre-reduction of As(V). The flow injection system was operated in the merging zones configuration, where sample and NaBH4 are simultaneously injected into two carrier streams, HCl and H2O, respectively. Sample and reagent injected volumes were of 250 μl and flow rate of 3.6 ml min−1 for hydrochloric acid and de-ionised water. The NaBH4 concentration was maintained at 0.1% (w/v), it would be possible to perform arsine selective generation from As(III) and on-line arsine generation with 3.0% (w/v) NaBH4 to obtain total arsenic concentration. As(V) was calculated as the difference between total As and As(III). Both procedures were tolerant to potential interference. So, interference such as Fe(III), Cu(II), Ni(II), Sb(III), Sn(II) and Se(IV) could, at an As(III) level of 0.1 mg l−1, be tolerated at a weight excess of 5000, 5000, 500, 100, 10 and 5 times, respectively. With the proposed procedure, detection limits of 0.3 ng ml−1 for As(III) and 0.5 ng ml−1 for As(V) were achieved. The relative standard deviations were of 2.3% for 0.1 mg l−1 As(III) and 2.0% for 0.1 mg l−1 As(V). A sampling rate of about 120 determinations per hour was achieved, requiring 30 ml of NaBH4 and waste generation in order of 450 ml. The method was shown to be satisfactory for determination of traces arsenic in water samples. The assay of a certified drinking water sample was 81.7±1.7 μg l−1 (certified value 80.0±0.5 μg l−1).  相似文献   

19.
Hasani M  Yaghoubi L  Abdollahi H 《Talanta》2006,68(5):1528-1535
H-point standard addition method, HPSAM, with simultaneous addition of three analytes is proposed for the resolution of ternary mixtures. It is a modification of the previously described H-point standard addition method that permits the resolution of three species from a unique calibration set by making the simultaneous addition of the three analytes. The method calculates the analyte concentration from spectral data at two wavelengths where the two species selected as interferents present the same absorbance relationship. These wavelength pairs are easily found, and can be selected to give the most precise results. Diethyldithiocarbomate (DDC) in a cationic micellar solution of cetyltrimethylammonium bromide (CTAB) was used for determination of Fe(II), Co(II) and Cu(II) at pH 5.50. The results showed that simultaneous determination of Fe(II), Co(II) and Cu(II) could be preformed in the range of 0.0–6.0, 0.0–8.0 and 0.0–12.0 μg ml−1, respectively. The proposed method was successfully applied to the simultaneous determination of Fe(II), Co(II) and Cu(II) in several synthetic mixtures containing different concentration of Fe(II), Co(II) and Cu(II).  相似文献   

20.
Agarwal S  Aggarwal SG  Singh P 《Talanta》2003,61(6):871-877
A specific method for the determination of a fungicide, i.e. iron(III) dimethyldithiocarbamate (ferbam) in fog-water samples is described. The method is based on the releasing of equivalent amount of iron from the fungicide and subsequently determination by spectrophotometrically or by flame-atomic absorption spectrometrically (flame-AAS). The fungicide was extracted with chloroform/toluene from the samples and digested with nitric acid. For spectrophotometric determination, the solution was then treated with ammonium thiocyanate solution in presence of the surfactants and absorbance was measured at 475 nm. Whereas, the digested solution was directly applied for flame-AAS determination of ferbam. The molar absorptivity in terms of ferbam was determined to be (3.49)×104 l mol−1 cm−1. The detection limits for spectrophotometric and flame-AAS methods were calculated to be 62 and 111 ppb ferbam (R.S.D. <1 and <3%), respectively. Whereas, the optimum concentration ranges for the analysis of ferbam are 4–120 and 1.5–55 μg in final volume, respectively. The methods are freed from interference of almost all ions [including Fe(II) and Fe(III)], which can commonly associate with ferbam in fog-water. The methods have been successfully applied to fog samples collected from agriculture sites of Raipur (central India).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号