首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this paper we consider a single-machine common due-window assignment scheduling problem with learning effect and deteriorating jobs. In this model, job processing times are defined by functions of their starting times and positions in the sequence. The window location and size, along with the associated job schedule that minimizes a certain cost function, are to be determined. This function is made up of costs associated with the window location, window size, earliness and tardiness. We show that the problem remains polynomially solvable under the proposed model.  相似文献   

2.
针对具有退化工件的排序模型,考虑了单机排序和两台机器流水作业的工期窗口安排问题,在这一模型中,工件的加工时间是与其开工时间和退化率有关的一个线性函数。目标是找到一个最优排序和确定工期窗口的开始时间及大小以便最小化所有工件的费用函数,费用函数由四部分组成:提前、延误、工期窗口开始时间和工期窗口大小。对所研究的单机问题,详细地讨论了符合现实情况的几种类型问题,并得到了问题的最优解;对两台机器流水作业问题,给出了多项式算法。  相似文献   

3.
We study a single machine slack due date assignment (usually referred to as SLK) scheduling problem with deteriorating jobs and a rate-modifying activity. The deterioration effect manifest such that the job processing time is a function of its starting time in a sequence. The rate-modifying activity is an activity that changes the processing rate of machine, i.e., the machine performs a rate-modifying activity. Hence the actual processing time of a job is a variable, which depends not only on its starting time in a sequence but also on whether it is scheduled before or after a rate-modifying activity. The goal is to schedule the rate-modifying activity, the optimal common flow allowance and the sequence of jobs to minimize the total earliness, the total tardiness and the common flow allowance cost. We show that the problem remains polynomially solvable under the proposed model.  相似文献   

4.
《Applied Mathematical Modelling》2014,38(19-20):4747-4755
We consider unrelated parallel machines scheduling problems involving resource dependent (controllable) processing times and deteriorating jobs simultaneously, i.e., the actual processing time of a job is a function of its starting time and its resource allocation. Two generally resource consumption functions, the linear and convex resource, were investigated. The objective is to find the optimal sequence of jobs and the optimal resource allocation separately. This paper focus on the objectives of minimizing a cost function containing makespan, total completion time, total absolute differences in completion times and total resource cost, and a cost function containing makespan, total waiting time, total absolute differences in waiting times and total resource cost. If the number of unrelated parallel machines is a given constant, we show that the problems remain polynomially solvable under the proposed model.  相似文献   

5.
In this study, we consider scheduling problems with convex resource dependent processing times and deteriorating jobs, in which the processing time of a job is a function of its starting time and its convex resource allocation. The objective is to find the optimal sequence of jobs and the optimal convex resource allocation separately. This paper focus on the single-machine problems with objectives of minimizing a cost function containing makespan, total completion time, total absolute differences in completion times and total resource cost, and a cost function containing makespan, total waiting time, total absolute differences in waiting times and total resource cost. It shows that the problems remain polynomially solvable under the proposed model.  相似文献   

6.
We extend a classical single-machine due-window assignment problem to the case of position-dependent processing times. In addition to the standard job scheduling decisions, one has to assign a time interval (due-window), such that jobs completed within this interval are assumed to be on time and not penalized. The cost components are: total earliness, total tardiness and due-window location and size. We introduce an O(n3) solution algorithm, where n is the number of jobs. We also investigate several special cases, and examine numerically the sensitivity of the solution (schedule and due-window) to the different cost parameters.  相似文献   

7.
In many realistic scheduling settings a job processed later consumes more time than when it is processed earlier – this phenomenon is known as scheduling with deteriorating jobs. In the literature on deteriorating job scheduling problems, majority of the research assumed that the actual job processing time of a job is a function of its starting time. In this paper we consider a new deterioration model where the actual job processing time of a job is a function of the processing times of the jobs already processed. We show that the single-machine scheduling problems to minimize the makespan and total completion time remain polynomially solvable under the proposed model. In addition, we prove that the problems to minimize the total weighted completion time, maximum lateness, and maximum tardiness are polynomially solvable under certain agreeable conditions.  相似文献   

8.
This paper considers the problems of scheduling with the effect of learning on a single-machine under group technology assumption. We propose a new learning model where the job actual processing time is linear combinations of the scheduled position of the job and the sum of the normal processing time of jobs already processed. We show that the makespan minimization problem is polynomially solvable. We also prove that the total completion time minimization problem with the group availability assumption remains polynomially solvable under agreeable conditions.  相似文献   

9.
We consider a single machine due date assignment scheduling problem with job-dependent aging effects and a deteriorating maintenance activity, where due dates are assigned using the SLK due date determination method. We need to make a decision on when to schedule the deteriorating maintenance activity, the optimal common flow allowance and the sequence of jobs to minimize total earliness, tardiness and common flow allowance cost. We show that the problem remains polynomially solvable under the proposed model.  相似文献   

10.
We consider single-machine scheduling problems in which the processing time of a job is a function of its starting time and its resource allocation. The objective is to find the optimal sequence of jobs and the optimal resource allocation separately. We concentrate on two goals separately, namely, minimizing a cost function containing makespan, total completion time, total absolute differences in completion times and total resource cost; minimizing a cost function containing makespan, total waiting time, total absolute differences in waiting times and total resource cost. We show that the problems remain polynomially solvable under the proposed model.  相似文献   

11.
In this paper, we consider single-machine scheduling problems with deteriorating jobs and resource allocation in a group technology environment. In the proposed model of this paper the actual processing time of a job depend on its starting time and the amount of resource allocated to it, and the actual setup time of a group depend on its starting time and the amount of resource allocated. Deterioration effect and two resource allocation functions are examined for minimizing the weighted sum of makespan and total resource cost. For the linear resource allocation function and the convex resource allocation function, we show that the problem remains polynomially solvable under certain conditions.  相似文献   

12.
考虑具有工件相关的退化效应和维修活动的单机排序模型,讨论了工期窗口安排问题.在这一模型中,机器在加工过程中产生退化使效率降低,工件的实际加工时间不仅与其所在排序中的位置有关并且与其本身的退化率有关;然而,维修活动能使机器的加工效率得到恢复.工期窗口的开始时间是已给定的常量,而工期窗口的结束时间是需要确定的变量.目标是得到安排维修活动的最佳时间、最佳工期窗口的大小和最优排序以便最小化流时间、提早、延误和工期窗口大小的总处罚函数.对这一问题,给出了一多项式算法.  相似文献   

13.
In this paper we consider the flow shop scheduling problems with the effects of learning and deterioration. In this model the processing times of a job is defined as a function of its starting time and position in a sequence. The scheduling objective functions are makespan and total completion time. We prove that even with the introduction of learning effect and deteriorating jobs to job processing times, some special flow shop scheduling problems remain polynomially solvable.  相似文献   

14.
In this paper, we consider single machine SLK due date assignment scheduling problem in which job processing times are controllable variables with linear costs. The objective is to determine the optimal sequence, the optimal common flow allowance and the optimal processing time compressions to minimize a total penalty function based on earliness, tardiness, common flow allowance and compressions. We solve the problem by formulating it as an assignment problem which is polynomially solvable. For some special cases, we present an O(n logn) algorithm to obtain the optimal solution respectively.  相似文献   

15.
A scheduling problem with a common due-window, earliness and tardiness costs, and identical processing time jobs is studied. We focus on the setting of both (i) job-dependent earliness/tardiness job weights and (ii) parallel uniform machines. The objective is to find the job allocation to the machines and the job schedule, such that the total weighted earliness and tardiness cost is minimized. We study both cases of a non-restrictive (i.e. sufficiently late), and a restrictive due-window. For a given number of machines, the solutions of the problems studied here are obtained in polynomial time in the number of jobs.  相似文献   

16.
The paper deals with machine scheduling problems with a general learning effect. By the general learning effect, we mean that the actual processing time of a job is not only a non-increasing function of the total weighted normal processing times of the jobs already processed, but also a non-increasing function of the job’s position in the sequence, where the weight is a position-dependent weight. We show that even with the introduction of a general learning effect to job processing times, some single machine scheduling problems are still polynomially solvable under the proposed model. We also show that some special cases of the flow shop scheduling problems can be solved in polynomial time.  相似文献   

17.
In this paper, we analyse single machine scheduling problems with learning and aging effects to minimize one of the following objectives: the makespan with release dates, the maximum lateness and the number of late jobs. The phenomena of learning and aging are modeled by job processing times described by non-increasing (learning) or non-decreasing (aging) functions dependent on the number of previously processed jobs, i.e., a job position in a sequence. We prove that the considered problems are strongly NP-hard even if job processing times are described by simple linear functions dependent on a number of processed jobs. Additionally, we show a property of equivalence between problems with learning and aging models. We also prove that if the function describing decrease/increase of a job processing time is the same for each job then the problems with the considered objectives are polynomially solvable even if the function is arbitrary. Therefore, we determine the boundary between polynomially solvable and strongly NP-hard cases.  相似文献   

18.
In this paper parallel identical machines scheduling problems with deteriorating jobs and learning effects are considered. In this model, job processing times are defined by functions of their starting times and positions in the sequence. We concentrate on two goals separately, namely, minimizing a cost function containing total completion time and total absolute differences in completion times; minimizing a cost function containing total waiting time and total absolute differences in waiting times. We show that the problems remain polynomially solvable under the proposed model.  相似文献   

19.
This paper is to analyze unrelated parallel-machine scheduling resource allocation problems with position-dependent deteriorating jobs. Two general resource consumption functions, the linear and convex resource, are investigated. The objectives are to minimize the cost function that includes the weights of total load, total completion time, total absolute deviation of completion time, and total resource cost. Moreover, we try to minimize the cost function that includes the weights of total load, total waiting time, total absolute deviation of waiting time, and total resource cost. Although each job processing time can be compressed through incurring an additional cost, we show that the problems are polynomial time solvable when the number of machines is fixed.  相似文献   

20.
In this paper, we analyse the single machine maximum lateness minimization scheduling problem with the processing time based aging effect, where the processing time of each job is described by a non-decreasing function dependent on the sum of the normal processing times of preceded jobs. The computational complexity of this problem was not determined. However, we show it is strongly NP-hard by proving the strong NP-hardness of the single machine maximum completion time minimization problem with this aging model and job deadlines. Furthermore, we determine the boundary between polynomially solvable and NP-hard cases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号