首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
N-butylimidazolium functionalized strongly basic anion exchange resin with Cl(-) anion (MCl) was prepared by anchoring N-butylimidazole onto chloromethylated macroporous styrene-divinylbenzene (St-DVB) copolymer. The adsorption performances of phenol on MCl were studied using the batch technique at acidic and alkaline pH. The studies showed that phenol can be effectively removed at both acidic and alkaline pH. The maximum adsorption was achieved at about pH 11. The maximum adsorption capacities of phenol on MCl at pH 6.6 and 11.2 were 80.2 and 92.9 mg/g, respectively. The adsorption mechanism was mainly molecular adsorption at acidic pH and anion exchange at alkaline pH. The adsorption of phenol was hindered by the presence of Cl(-) and SO(4)(2-) at alkaline pH due to the competitive anion exchange reaction. The adsorption of molecular phenol species on MCl at acidic pH was exothermic, and the anion exchange of phenolate species by MCl at alkaline pH was endothermic. Desorption of phenol from loaded adsorbent was achieved by using 0.5 mol/L NaOH and 0.5 mol/L NaCl mixed solution. MCl can simultaneously remove phenol and Cr(VI) from their mixtures, which would be of practical value in actual industrial wastewater treatment.  相似文献   

2.
纳米羟基磷灰石制备及其对溶液中苯酚吸附的优化设计   总被引:3,自引:0,他引:3  
采用化学沉淀法制备得到纳米羟基磷灰石(n-HAp)粉体,研究了n-HAp粉体对水溶液中苯酚的吸附性能,并初步探讨了其在粉体上的吸附机理,在低浓度(5~30mg/L)时的吸附符合Freundlich等温吸附模型。实验结果表明,n-HAp粉体对苯酚具有较好的吸附效果,2h可基本达到吸附平衡。利用正交设计实验探讨了粉体煅烧温度、吸附温度、吸附时间、溶液pH等因素对吸附效果的影响。正交实验结果统计分析表明,各种因素对吸附的影响程度依次为:溶液pH>煅烧温度>振荡温度>振荡时间。pH对吸附性能的影响最明显,强酸和强碱环境能有效提高n-HAp对苯酚的吸附量。  相似文献   

3.
Oxidative coupling and the irreversible adsorption of phenol by graphite   总被引:2,自引:0,他引:2  
Uptake of phenol by graphite, and regeneration by methanol extraction, was measured to evaluate irreversible adsorption of phenols to carbon surfaces. The emphasis of this work was to identify the role of oxidative coupling, which has been invoked to explain irreversible phenol sorption by activated carbons. Graphite was chosen as a model carbon surface to eliminate potentially confounding effects of microporosity present in other types of carbonaceous sorbents. The isotherm data were well described by the Langmuir-Freundlich isotherm from pH 3 to 9. At pH 12, measured uptakes were higher than expected based on model predictions, suggesting the occurrence of an adsorption mechanism besides physisorption. One oxidative coupling product, 2,2'-dihydroxybiphenyl, was obtained exclusively after adsorption at pH values above 7, and appeared both in aqueous solution and in the methanol regenerant solution. The fraction of total uptake that was not recoverable by methanol extraction decreased with increasing phenol concentration in solution, suggesting preferential sorption by high-energy sites. However, absolute irreversible adsorption increased with phenol concentration in solution. Both fractional irreversible adsorption and 2,2'-dihydroxybiphenyl oxidative coupling product recovery as a function of pH and contact time demonstrated that irreversible sorption of phenol by graphite could not be explained by an oxidative coupling mechanism alone.  相似文献   

4.
Two macroporous crosslinked poly(styrene-co-divinylbenzene) resins functionalized with methoxy and phenoxy groups, PVBME and PVBPE were prepared and their adsorption characteristics for phenol were studied in hexane as well as in aqueous solution. It was shown that the equilibrium adsorption capacity of phenol onto PVBPE was a little larger than that onto PVBME at the same temperature and equilibrium concentration. The adsorption onto PVBME in hexane can be correlated to Langmuir isotherm model, whereas the semi-empirical Freundlich isotherm model characterized the adsorption onto PVBPE better. The adsorption thermodynamic parameters were calculated and it was found that the adsorption enthalpy, adsorption free energy, and adsorption entropy were all negative, and the adsorption thermodynamic parameters onto PVBPE were more negative than the corresponding ones onto PVBME. The relationship of the adsorption capacity with the equilibrium concentration was linear in aqueous solution. The adsorption was hypersensitive to the solution pH in aqueous solution, and the optimum pH was determined to be 6.0. The adsorption dynamics of phenol onto PVBPE in aqueous solution was investigated and it was seen that the adsorption can be well fitted by the pseudo-first-order rate equation.  相似文献   

5.
焦木素对苯酚吸附性能的研究   总被引:9,自引:1,他引:8  
随着环境科学的不断发展 ,水中越来越多的有机化合物被检测出来 ,它们的存在对人体的危害已日益引起人们的关注。酚类化合物是环境中的一类主要污染物 ,来源于炼油、炼焦、煤气洗涤、造纸、化工等工业废水和废弃物 ,酚类影响水中生物的正常生长 ,使水产品着臭。当水中酚含量在0 .3mg·ml- 1 以上时 ,可引起生物的逃逸。国内外学者利用各种吸附剂去除水中的酚[1~ 3] ,其中活性炭纤维去除效果最佳 ,但其价格昂贵 ,目前在我国难以广泛使用。本文所用焦木素是以造纸黑液提取的木素为原料制备的 ,其吸附性能与活性炭类似 ,其原料来源丰富 ,…  相似文献   

6.
Bentonite was modified with hexadecyltrimethylammonium bromide or bencylhexadecyldimethylammonium chloride. Phenol adsorption kinetic and isotherms experiments were performed; in both cases, phenol was determined in the aqueous solutions by UV–Vis spectroscopy. The results showed that the adsorption of phenol depends on the kind of surfactant, and pH of the solutions. The adsorption was higher for the clay modified with bencylcetyldimethylammonium chloride than hexadecyltrimethylammonium bromide.  相似文献   

7.
聚环糊精的制备及其对苯酚的吸附性能研究   总被引:11,自引:0,他引:11  
合成了β-环糊精聚合物,并采用红外光谱、元素分析及BET吸附法对聚环糊精进行了表征.从吸附动力学和热力学角度研究了聚环糊精对苯酚的吸附性能,拟合出了Langmuir吸附模型中的各参数.结果表明,聚环糊精对苯酚的吸附容量可达12mg/g以上,且吸附能力主要来自聚环糊精对苯酚的包合作用.  相似文献   

8.
采用乙二醛作为交联物合成了一种β-环糊精接枝壳聚糖,研究了其对水溶液中对硝基苯酚的吸附性能;考察了温度、pH值、吸附时间、酚溶液初始浓度等因素对其吸附性能的影响.结果表明,当吸附时间为20min,pH值为5~6,温度为25℃~35℃,酚溶液初始浓度为80 mg/L时,β-环糊精接枝壳聚糖对对硝基苯酚的吸附性能最佳.  相似文献   

9.
聚乙烯亚胺表面改性硅藻土及其对苯酚吸附特性的研究   总被引:3,自引:0,他引:3  
使用紫外吸收光度法研究了硅藻土对聚乙烯亚胺(PEI)的等温吸附;采用浸渍法,用PEI对硅藻土进行了表面改性;使用4-氨基安替比林光度法研究了经PEI表面改性的硅藻土对苯酚的捕集行为.研究结果表明,凭借强烈的静电相互作用,表面带负电荷的硅藻土粉体对阳离子性大分子PEI具有很强的吸附能力,等温吸附满足Freundlich吸附方程;经PEI表面改性后,硅藻土粉体表面的电性发生了根本性改变,且等电点由pH=2.0移至pH=10.5;在中性溶液中,改性粉体通过氢键作用与静电相互作用的协同,对水溶液中的苯酚会产生很强的捕集作用,饱和吸附量可达92 mg/g;在酸性溶液中改性粉体通过氢键相互作用,对水溶液中的苯酚产生一定的吸附作用,但由于PEI分子链高度的质子化,氮原子对苯酚的氢键相互作用很弱,吸附量很低.  相似文献   

10.
Carbon xerogel (CX) was used for phenol adsorption from aqueous solution. CX was synthesized by sol?Cgel polycondensation of resorcinol with formaldehyde using sodium carbonate (Na2CO3) as catalyst. Then, it was dried by convective drying technique and pyrolyzed under inert atmosphere. Phenol adsorption kinetics was very fast, what was attributed to the presence of open pore structure. The kinetic studies showed that the adsorption process could be fitted to a pseudo-second-order model and the particle diffusion process is the rate-limiting step of the adsorption. The phenol removal was maximum and unaffected by pH changes when the initial pH of the phenol solution was in the range of 3?C8. The optimum adsorbent dose obtained for phenol adsorption onto CX was 0.075?g/50?cm3 solution. The Langmuir model described the adsorption process better than the Freundlich isotherm model and the monolayer adsorption capacity is 32?mg?g?1. Among the desorbing solutions used in this study, the most efficient desorbent was EtOH (100?%) which released about 87?% of phenol bound with the CX.  相似文献   

11.
STUDY ON THE ADSORPTION OF PHENOL BY CHITOSAN FROM AQUEOUS SOLUTION   总被引:1,自引:0,他引:1  
The effects of pH, initial concentration and temperature on the adsorption of phenol by chitosan were investigated in this paper. The isothermal data was applied to Langmuir linear and the Freundlich linear isotherm equation, and the thermodynamic parameters (AH, AG, AS) were calculated according to the values of binding Langmuir constant, KL. Results indicated that the adsorption between chitosan and phenol was significantly physical in nature, the negative ΔH constant at lower temperature confirmed that more phenol was adsorbed by chitosan at lower temperature. The kinetics of the sorption process of phenol on chitosan was investigated using the pseudo-first order and pseudo-second order kinetics, and results showed that the second order equation model provided the best correlation with the experimental results.  相似文献   

12.
氨基硅烷修饰的SBA-15用于CO2的吸附   总被引:3,自引:0,他引:3  
王林芳  马磊  王爱琴  刘茜  张涛 《催化学报》2007,28(9):805-810
以3-丙胺基三乙氧基硅烷(APTES)为硅烷化试剂,分别采用后修饰法和一步嫁接法将其嫁接到SBA-15的孔内,形成了功能化的介孔分子筛用于CO2吸附.利用X射线衍射和氮气物理吸附等方法考察了嫁接前后SBA-15的孔结构变化,用静态吸附天平考察了不同温度和不同分压下CO2的吸附行为.实验结果表明,一步嫁接法比后修饰法更有利于实现APTES在SBA-15上的嫁接.与传统的活性炭吸附剂相比,该种介孔分子筛更有利于较低分压下CO2的吸附脱除.  相似文献   

13.
刘安安  樊凯  熊厚峰  董阔  杨洋  邹东雷 《电化学》2013,19(4):336-340
采用电动力学技术修复苯酚污染的粘性土壤,研究了苯酚的吸附特性,以及粘土中苯酚的最佳萃取剂和萃取条件,并讨论了不同pH、含水率、电场强度及不同添加物条件下苯酚的迁移特性. 实验得出,苯酚的吸附符合Freundlich等温式,最大吸附量362 mg·kg-1;用三氯甲烷做萃取剂,超声波20 min加恒温震荡30 min,从土壤中提取苯酚,萃取率可达到94.3%;土壤电动力学过程中苯酚向阳极迁移并在距离阳极0 ~ 6 cm处富集. 在pH值8.16,含水率为40%,电场强度为2 V·cm-1条件下,阳极添加0.1 mol·L-1 NaOH溶液,并向阴极添加0.05 mol·L-1 LAS溶液,苯酚的迁移效果达到最佳,在距阳极0 cm和6 cm处苯酚富集倍数分别达到139.0%和133.7%.  相似文献   

14.
The effect of the ionic environment on the adsorption of phenol from aqueous solutions was investigated in a microporous carbon and in an oxidized carbon. It was found that not only the pH of the solution but also the method of its setting affects the adsorption capacity. Thermal desorption of phenol exhibits an even stronger dependence on the method of pH setting than adsorption. The TG response, the position and the corresponding TG steps are also influenced by the surface chemistry. Thermogravimetry is found to be outstandingly useful and informative technique for the studying sorption interactions.  相似文献   

15.
Activated carbon is produced from pecan shells by chemical activation using phosphoric acid. This activation is followed by the treatment with sodium dodecyl sulfate to prepare the surface for the adsorption of phenol and methylene blue from aqueous solution. The results showed a great ability for methylene blue removal with sorption capacity of 410 mg/g at pH 9 and solution concentration of 35 mg/l, while moderate adsorption was obtained for phenol with a capacity of 18 mg/g at pH 11 and the same solution concentration. The increase or decrease in solution pH has a favorable effect on the sorption of both adsorbates. Langmuir and Freundlich models were used to fit the experimental data. The text was submitted by the authors in English.  相似文献   

16.
改性小麦秸杆纤维素球对苯酚吸附性能研究   总被引:2,自引:0,他引:2  
本文利用制得的改性小麦秸秆纤维素球对苯酚吸附性能进行了研究。实验结果表明:改性小麦秸秆纤维素球对苯酚的吸附30min内基本达到平衡,吸附剂对苯酚吸附量随起始质量浓度的增加而增加,且呈线性关系;在T=298K、pH=5.0时,吸附剂对苯酚的吸附量达到最大。在一定浓度、温度条件下,改性小麦秸秆纤维素球吸附苯酚的过程符合Freundlich吸附模型。吸附再生实验表明,改性小麦秸秆纤维素球对苯酚有较好的吸附再生能力。并对印染废水中的苯酚进行了实际的吸附测定。  相似文献   

17.
18.
邓琳  祁志美 《物理化学学报》2010,26(7):1923-1928
利用六甲基二硅烷胺对平面玻璃光波导(高折射率透明导光薄膜介质)进行硅烷化处理, 得到水接触角大于90°的疏水表面. 然后使用时间分辨光波导分光光谱技术研究水溶液中的罗丹明6G (R6G)和亚甲基蓝(MB)分子在疏水玻璃表面的吸附行为, 并与亲水玻璃条件下测得的结果进行对比. 对利用疏水玻璃光波导测得的R6G的吸附-脱附动力学曲线进行Langmuir拟合得到了R6G的吸附速率常数, 脱附速率常数以及吸附自由能. 并且发现与亲水玻璃情况相比, 吸附速率常数增大, 脱附速率常数减小, 吸附自由能更负. 在疏水玻璃表面形成的R6G和MB吸附层的吸光度与亲水玻璃情况相比显著升高, 表明这两种分子更倾向于吸附在疏水玻璃表面. 实验结果还发现玻璃硅烷化处理能够有效抑制这两种染料分子在表面的聚合反应.  相似文献   

19.
The objective of this study is to remove the phenol from aqueous solution by using the neutralized red mud in batch adsorption technique. The study was carried out as functions of contact time, pH, initial phenol concentration, red mud dosage and effect of salt addition. The experiments demonstrated that maximum phenol removal was obtained in a wide pH range of 1-9 and it takes 10 h to attain equilibrium. The adsorption data was analyzed using the Langmuir and the Freundlich isotherm models and it was found that the Freundlich isotherm model represented the measured sorption data well. The influence of addition of salt on phenol removal depends on the relative affinity of the anions for the red mud surface and the relative concentrations of the anions.  相似文献   

20.
The adsorption of lead onto agricultural soil in the presence of organic compounds such as, humic acid, gallic acid or phenol was studied. The study included the factors affecting the adsorption process such as contact time, pH, adsorbent dose, metal concentration and organic ligands concentration. The experimental isotherm data were found to fit both Langmuir and Freundlich isotherms. The results show that the pseudo second-order equation provides the best correlation for the adsorption process. The results indicate that both humic acid and phenol increase the adsorption of lead while gallic acid slightly decreases the adsorption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号