首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objective of this study is to remove the phenol from aqueous solution by using the neutralized red mud in batch adsorption technique. The study was carried out as functions of contact time, pH, initial phenol concentration, red mud dosage and effect of salt addition. The experiments demonstrated that maximum phenol removal was obtained in a wide pH range of 1-9 and it takes 10 h to attain equilibrium. The adsorption data was analyzed using the Langmuir and the Freundlich isotherm models and it was found that the Freundlich isotherm model represented the measured sorption data well. The influence of addition of salt on phenol removal depends on the relative affinity of the anions for the red mud surface and the relative concentrations of the anions.  相似文献   

2.
Activated carbon is produced from pecan shells by chemical activation using phosphoric acid. This activation is followed by the treatment with sodium dodecyl sulfate to prepare the surface for the adsorption of phenol and methylene blue from aqueous solution. The results showed a great ability for methylene blue removal with sorption capacity of 410 mg/g at pH 9 and solution concentration of 35 mg/l, while moderate adsorption was obtained for phenol with a capacity of 18 mg/g at pH 11 and the same solution concentration. The increase or decrease in solution pH has a favorable effect on the sorption of both adsorbates. Langmuir and Freundlich models were used to fit the experimental data. The text was submitted by the authors in English.  相似文献   

3.
The effect of the ionic environment on the adsorption of phenol from aqueous solutions was investigated in a microporous carbon and in an oxidized carbon. It was found that not only the pH of the solution but also the method of its setting affects the adsorption capacity. Thermal desorption of phenol exhibits an even stronger dependence on the method of pH setting than adsorption. The TG response, the position and the corresponding TG steps are also influenced by the surface chemistry. Thermogravimetry is found to be outstandingly useful and informative technique for the studying sorption interactions.  相似文献   

4.
刘安安  樊凯  熊厚峰  董阔  杨洋  邹东雷 《电化学》2013,19(4):336-340
采用电动力学技术修复苯酚污染的粘性土壤,研究了苯酚的吸附特性,以及粘土中苯酚的最佳萃取剂和萃取条件,并讨论了不同pH、含水率、电场强度及不同添加物条件下苯酚的迁移特性. 实验得出,苯酚的吸附符合Freundlich等温式,最大吸附量362 mg·kg-1;用三氯甲烷做萃取剂,超声波20 min加恒温震荡30 min,从土壤中提取苯酚,萃取率可达到94.3%;土壤电动力学过程中苯酚向阳极迁移并在距离阳极0 ~ 6 cm处富集. 在pH值8.16,含水率为40%,电场强度为2 V·cm-1条件下,阳极添加0.1 mol·L-1 NaOH溶液,并向阴极添加0.05 mol·L-1 LAS溶液,苯酚的迁移效果达到最佳,在距阳极0 cm和6 cm处苯酚富集倍数分别达到139.0%和133.7%.  相似文献   

5.
Single-walled carbon nanotubes (SWCNTs), multiwalled carbon nanotubes (MWCNTs), and oxidized MWCNTs (O-MWCNTs) were studied for the adsorption of ibuprofen (IBU) and triclosan (TCS) as representative types of pharmaceutical and personal care products (PPCPs) under different chemical solution conditions. A good fitting of sorption isotherms was obtained using a Polanyi-Manes model (PMM). IBU and TCS sorption was stronger for SWCNTs than for MWCNTs due to higher specific surface area. The high oxygen content of O-MWCNT further depressed PPCP sorption. The sorption capacity of PPCPs was found to be pH-dependent, and more adsorption was observed at pHs below their pK(a) values. Ionic strength was also found to substantially affect TCS adsorption, with higher adsorption capacity observed for TCS at lower ionic strength. In the presence of a reference aquatic fulvic acid (FA), sorption of IBU and TCS was reduced due to the competitive sorption of FA on carbon nanotubes (CNTs). Sorption isotherm results with SWCNTs, MWCNTs and O-MWCNTs confirmed that the surface chemistry of CNTs, the chemical properties of PPCPs, and aqueous solution chemistry (pH, ionic strength, fulvic acid) all play an important role in PPCP adsorption onto CNTs.  相似文献   

6.
Two macroporous crosslinked poly(styrene-co-divinylbenzene) resins functionalized with methoxy and phenoxy groups, PVBME and PVBPE were prepared and their adsorption characteristics for phenol were studied in hexane as well as in aqueous solution. It was shown that the equilibrium adsorption capacity of phenol onto PVBPE was a little larger than that onto PVBME at the same temperature and equilibrium concentration. The adsorption onto PVBME in hexane can be correlated to Langmuir isotherm model, whereas the semi-empirical Freundlich isotherm model characterized the adsorption onto PVBPE better. The adsorption thermodynamic parameters were calculated and it was found that the adsorption enthalpy, adsorption free energy, and adsorption entropy were all negative, and the adsorption thermodynamic parameters onto PVBPE were more negative than the corresponding ones onto PVBME. The relationship of the adsorption capacity with the equilibrium concentration was linear in aqueous solution. The adsorption was hypersensitive to the solution pH in aqueous solution, and the optimum pH was determined to be 6.0. The adsorption dynamics of phenol onto PVBPE in aqueous solution was investigated and it was seen that the adsorption can be well fitted by the pseudo-first-order rate equation.  相似文献   

7.
Single-component adsorption isotherm data were acquired by frontal analysis (FA) for phenol and caffeine on a new C18-Chromolith column (Merck, Darmstadt, Germany), using a water-rich mobile phase (methanol/water, 15/85, v/v). These data were modeled for best agreement between the experimental data points and the adsorption isotherm model. The adsorption-energy distributions, based on the expectation-maximization (EM) procedure, were also derived and used for the selection of the best isotherm model. The adsorption energy distributions (AEDs) for phenol and caffeine converged toward a trimodal and a quadrimodal distribution, respectively. Energy distributions with more than two modes had not been reported before for the adsorption of these compounds on packed columns. The third high energy mode observed for both phenol and caffeine seems to be specific of the surface of the monolithic column while the first and second low energy modes have the same physical origin as the two modes detected on packed columns. These results suggest significant differences between the structures of the porous silica in these different materials.  相似文献   

8.
Role of surface chemistry in adsorption of phenol on activated carbons   总被引:6,自引:0,他引:6  
Two samples of activated carbon of wood origin were oxidized using ammonium persulfate. The structural properties and surface chemistry of the samples and their oxidized counterparts were characterized using sorption of nitrogen and Boehm titration, respectively. Phenol adsorption from solution (at trace concentrations) was studied at temperatures close to ambient without maintaining a specific pH of the solution. The results showed, as expected, that the phenol uptake is dependent on both the porosity and surface chemistry of the carbons. Furthermore, phenol adsorption showed a strong dependence on the number of carboxylic groups due to two factors: (1) phenol reacts with carboxylic groups on the carbon surface, forming an ester bond, and (2) carboxylic groups on the carbon surface remove the pi-electron from the activated carbon aromatic ring matrix, causing a decrease in the strength of interactions between the benzene ring of phenol and the carbon's basal planes, which decreases the uptake of phenol.  相似文献   

9.
A water-compatible phenolic hydroxyl modified polystyrene adsorbent (AM-1) foradsorbing and removing phenolic compounds from aqueous solutions was prepared by covalent bonding of phenolic hydroxyl groups to the surface of porous polystyrene-divinylbenzene beads, this resin can be used directly without wetting process. A comparison of the sorption properties of the new resin and Amberlite XAD-4 toward four phenolic compounds, phenol, p-cresol, p-chlorophenol,and p-nitrophenol was made. The capacities of equilibrium adsorption of AM-l for all four phenolic compounds increased around 20% over that of Amberlite XAD-4, which may be contributed to phenol hydroxyl group on the surface and the unusual pore distributior. At their dilute solution, the equilibrium adsorption capacities of AM-1 for phenol increased about 62% over that of Amberlite X4D-4, while equilibrium adsorption capacities of the other three phenolic compounds increased 4-35%, suggesting an advantage of AM-I over Amberlite XAD-4 in the collection of phenol.Freundlich isotherm equations and isosteric adsorption enthalpies for the four phenolic compounds indicate a physical adsorption process on the Amberlite XAD-4 and AM-I resins. Column studies for phenol show that AM-1 resin has excellent adsorption and desorption performance.  相似文献   

10.
1. INTRUDUCTION As most phenolic compounds are extremely toxic at the concentrations discharged into accepting effluents, the removal or destruction of phenolic compounds from such streams has become a significant environmental task [1]. Increasing concern for public health and environmental quality has led to the establishment of limits on the acceptable environmental levels of specific pollutants [2]. Consequently there has been a growing interest in developing and implementing various …  相似文献   

11.
STUDY ON THE ADSORPTION OF PHENOL BY CHITOSAN FROM AQUEOUS SOLUTION   总被引:1,自引:0,他引:1  
The effects of pH, initial concentration and temperature on the adsorption of phenol by chitosan were investigated in this paper. The isothermal data was applied to Langmuir linear and the Freundlich linear isotherm equation, and the thermodynamic parameters (AH, AG, AS) were calculated according to the values of binding Langmuir constant, KL. Results indicated that the adsorption between chitosan and phenol was significantly physical in nature, the negative ΔH constant at lower temperature confirmed that more phenol was adsorbed by chitosan at lower temperature. The kinetics of the sorption process of phenol on chitosan was investigated using the pseudo-first order and pseudo-second order kinetics, and results showed that the second order equation model provided the best correlation with the experimental results.  相似文献   

12.
13.
A water-compatible phenolic hydroxyl modified polystyrene adsorbent (AM-1) for adsorbing and removing phenolic compounds from aqueous solutions was prepared by covalent bonding of phenolic hydroxyl groups to the surface of porous polystyrene-divinylbenzene beads,this resin can be used directly without wetting process.A comparison of the sorption properites of the new resin and Amberlite XAD-4 toward four phenolic compounds,phenol,p-cresol,p-chlorophenol,and p-nitrophenol was made.The capacities of equilibrium adsorption of AM-1 for all four phenolic compounds increased around 20% over that of Amberlite XAD-4,which may be contributed to pheonl hydroxyl group on the surface and the unusual poe distribution.At their dilute solution,the equilibrium adsorption capacities of AM-1 for phenol increased aout 62% over that of Amberlite XAD-4,while equilibrium adsorption capacities of the other three phenolic compounds increased 4-35%,suggesting an advantage of AM-1 over Amberlite XAD-4 in the collection of phenol.Freundlich isotherm equations and isosteric adsorption enthalpies for the four phenolic compunds indicate a physical adsorption process on the Amberlite XAD-4 and AM-1 resins,Column studies for phenol show that AM-1 resin has excellent adsorption and desorption performance.  相似文献   

14.
Macroporous poly(methyl methacrylate-co-divinylbenzene) (PMMA), interpenetrating polymer adsorbent based on poly(styrene-co-divinylbenzene) (PS) and poly(methyl methacrylate-co-divinylbenzene) (PMMA/PS), and macroporous cross-linked poly(N-p-vinylbenzyl acetylamide) (PVBA) were prepared for the adsorption of phenol from cyclohexane. The sorption isotherms of phenol on the three polymeric adsorbents were measured and fitted to Langmuir and Freundlich isotherms. It is shown that the Langmuir isotherm, which is based on a homogeneous surface model, is unsuitable to describe the sorption of phenol on the adsorbents from nonaqueous solution and the Freundlich equation fits the tested three adsorption systems well. The isosteric enthalpy was quantitatively correlated with the fractional loading for the sorption of phenol onto the three polymeric adsorbents. The surface energetic heterogeneity patterns of the adsorbents were described with functions of isosteric enthalpy. The results showed that the tested three polymeric adsorbents exhibited different surface energetic heterogeneity patterns. The initial isosteric enthalpy of phenol sorption on polymeric adsorbent has to do with the surface chemical composition and is free from the pore structure of the polymeric adsorbent matrix. Forming hydrogen bonds between phenol molecules and adsorbent is the main driving force of phenol sorption onto PVBA and PMMA adsorbent from nonaqueous solution. When phenol is adsorbed on PMMA/PS, pi-pi interaction resulting from the stacking of the benzene rings of the adsorbed phenol molecules and the pendant benzene ring of adsorbent is involved.  相似文献   

15.
Single component adsorption and desorption isotherms of phenol were measured on a high-efficiency Kromasil-C18 column (N = 15000 theoretical plates) with pure water as the mobile phase. Adsorption isotherm data were acquired by frontal analysis (FA) for seven plateau concentrations distributed over the whole accessible range of phenol concentration in pure water (5, 10, 15, 20, 25, 40, and 60 g/l). Desorption isotherm data were derived from the corresponding rear boundaries, using frontal analysis by characteristic points (FACP). A strong adsorption hysteresis was observed. The adsorption of phenol is apparently modeled by a S-shaped isotherm of the first kind while the desorption isotherm is described by a convex upward isotherm. The adsorption breakthrough curves could not be modeled correctly using the adsorption isotherm because of a strong dependence of the accessible free column volume on the phenol concentration in the mobile phase. It seems that retention in water depends on the extent to which the surface is wetted by the mobile phase, extent which is a function of the phenol concentration, and of the local pressure rate, which varies along the column, and on the initial state of the column. By contrast, the desorption profiles agree well with those calculated with the desorption isotherms using the ideal model, due to the high column efficiency. The isotherm model accounting best for the desorption isotherm data and the desorption profiles is the bi-Langmuir model. Its coefficients were calculated using appropriate weights in the fitting procedure. The evolution of the bi-Langmuir isotherm parameters with the initial equilibrium plateau concentration of phenol is discussed. The FACP results reported here are fully consistent with the adsorption data of phenol previously reported and measured by FA with various aqueous solutions of methanol as the mobile phase. They provide a general, empirical adsorption model of phenol that is valid between 0 and 65% of methanol in water.  相似文献   

16.
This article discusses the diffusion and solubility behavior of methanol/methyl tert‐butyl ether (MTBE) in glassy 6FDA–ODA polyimide prepared from hexafluoroisopropylidene 2,2‐bis(phthalic anhydride) (6FDA) and oxydianiline (ODA). The diffusion coefficients and sorption isotherm of methanol vapor in 6FDA–ODA polyimide at various pressures and film thicknesses were obtained with a McBain‐type vapor sorption apparatus. Methanol/MTBE mixed‐liquid sorption isotherms were obtained by head‐space chromatography and compared with a pure methanol sorption isotherm obtained with a quartz spring balance. Methanol sorption isotherms obtained with the two methods were almost identical. Both methanol sorption isotherms obeyed the dual‐mode model at a lower activity, which is typical for glassy polymer behavior. The MTBE was readily sorbed into the polymer in the presence of methanol, but the MTBE sorption isotherm exhibited a highly nonideal behavior. The MTBE sorption levels were a strong function of the methanol sorption level. Methanol diffusion in the polymer was analyzed in terms of the partial immobilization model with model parameters obtained from average diffusion coefficients and the dual‐mode sorption parameters. Simple average diffusion coefficients were obtained from sorption kinetics experiments, whereas the dual‐mode sorption parameters were obtained from equilibrium methanol sorption experiments. An analysis of the mobility and solubility data for methanol indicated that methanol tends to form clusters at higher sorption levels. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 2254–2267, 2000  相似文献   

17.
This study combines measurements of the thermodynamics and kinetics of guest sorption with powder X-ray diffraction measurements of the nanoporous metal organic framework adsorbent (host) at different adsorptive (guest) loadings. The adsorption characteristics of nitrogen, argon, carbon dioxide, nitrous oxide and ethanol and methanol vapors on Ni2(4,4'-bipyridine)3(NO3)4 were studied over a range of temperatures as a function of pressure. Isotherm steps were observed for both carbon dioxide and nitrous oxide adsorption at approximately 10-20% of the total pore volume and at approximately 70% of total pore volume for methanol adsorption. The adsorption kinetics obey a linear driving force (LDF) mass transfer model for adsorption at low surface coverage. At high surface coverage, both methanol and ethanol adsorption follow a combined barrier resistance/diffusion model. The rates of adsorption in the region of both the carbon dioxide and methanol isotherm steps were significantly slower than those observed either before or after the step. X-ray diffraction studies at various methanol loadings showed that the host structure disordered initially but underwent a structural change in the region of the isotherm step. These isotherm steps are ascribed to discrete structural changes in the host adsorbent that are induced by adsorption on different sites. Isotherm steps were not observed for ethanol adsorption, which followed a Langmuir isotherm. Previous X-ray crystallography studies have shown that all the sites are equivalent for ethanol adsorption on Ni2(4,4'-bipyridine)3(NO3)4, with the host structure undergoing a scissoring motion and the space group remaining unchanged during adsorption. The activation energies and preexponential factors for methanol and ethanol adsorption were calculated for each pressure increment at which the linear driving force model was obeyed. There was a good correlation between activation energy and ln(preexponential factor), indicating a compensation effect. The results are discussed in terms of reversible adsorbate/adsorbent (guest/host) structural changes and interactions and the adsorption mechanism. The paper contains the first evidence of specific interactions between guests and functional groups leading to structural change in flexible porous coordination polymer frameworks.  相似文献   

18.
常钢  江祖成  彭天右  胡斌 《化学学报》2003,61(1):100-103
溶胶-凝胶法合成高比表面积纳米氧化铝,以透射电镜(TEM),X射线衍射( XRD),比表面积测定(BET)等手段对所得的纳米氧化铝进行了表征,表明纳米粒 子的粒径在40-80nm。以ICP-AES为检测手段,考察了纳米氧化铝材料在静态吸附 条件下对于过渡金属离子的富集分离性能。结果表明,在pH8-9范围内,过渡金属 离子Cu,Mn,Cr,Ni可实现定量分离富集。吸附于纳米氧化铝上的金属离子可用1. 0mol/L盐酸溶液完全解脱。将所合成的纳米氧化铝用于实际标准样品黑麦叶和煤烟 灰中Cu,Mn,Cr,Ni的分离富集及ICP-AES测定,结果满意。  相似文献   

19.
赵振国  顾惕人 《化学学报》1987,45(7):645-650
测定了15℃和30℃时炭黑自水和环己烷中吸附非离子型表面活性剂TritonX-100和Triton X-305的等温线;计算了吸附过程的标准热力学函数;测定了石墨/水/环己烷和石墨/水/空气的接触角与表面活性剂浓度的关系, 分析所得结果,可得结论:在炭黑/水或石墨/水界面上,Triton型表面活性分子形成单分子吸附层,分子以憎水的iso-C8H17C6H4基团附着在表面,而以亲水的聚氧乙烯链伸入水相的方式取向;在炭黑/环已烷或石墨/环己烷界面上,分子是通过聚氧乙烯链吸附到表面上的,当浓度增加时分子在表面可能通过聚氧乙烯链间的相互作用而发生聚集,即可能形成表面反式胶团。  相似文献   

20.
Present study deals with the adsorption of phenol on carbon rich bagasse fly ash (BFA) and activated carbon-commercial grade (ACC) and laboratory grade (ACL). BFA is a solid waste obtained from the particulate collection equipment attached to the flue gas line of the bagasse-fired boilers of cane sugar mills. Batch studies were performed to evaluate the influences of various experimental parameters like initial pH (pH0), contact time, adsorbent dose and initial concentration (C0) on the removal of phenol. C0 varied from 75 to 300 mg/l for the adsorption isotherm studies and the effect of temperature on adsorption. Optimum conditions for phenol removal were found to be pH0  6.5, adsorbent dose ≈10 g/l of solution and equilibrium time ≈5 h. Adsorption of phenol followed pseudo-second order kinetics with the initial sorption rate for adsorption on ACL being the highest followed by those on BFA and ACC. The effective diffusion coefficient of phenol is of the order of 10−10 m2/s. Equilibrium isotherms for the adsorption of phenol on BFA, ACC and ACL were analysed by Freundlich, Langmuir, Temkin, Redlich–Peterson, Radke–Prausnitz and Toth isotherm models using non-linear regression technique. Redlich–Peterson isotherm was found to best represent the data for phenol adsorption on all the adsorbents. The change in entropy (ΔS°) and heat of adsorption (ΔH°) for phenol adsorption on BFA were estimated as 1.8 MJ/kg K and 0.5 MJ/kg, respectively. The high negative value of change in Gibbs free energy (ΔG°) indicates the feasible and spontaneous adsorption of phenol on BFA. The values of isosteric heat of adsorption varied with the surface loading of phenol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号