首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
NiO-loaded NaTaO(3) doped with lanthanum showed a high photocatalytic activity for water splitting into H(2) and O(2) in a stoichiometric amount under UV irradiation. The photocatalytic activity of NiO-loaded NaTaO(3) doped with lanthanum was 9 times higher than that of nondoped NiO-loaded NaTaO(3). The maximum apparent quantum yield of the NiO/NaTaO(3):La photocatalyst was 56% at 270 nm. The factors affecting the highly efficient photocatalytic water splitting were examined by using various characterization techniques. Electron microscope observations revealed that the particle sizes of NaTaO(3):La crystals (0.1-0.7 microm) were smaller than that of the nondoped NaTaO(3) crystal (2-3 microm) and that the ordered surface nanostructure with many characteristic steps was created by the lanthanum doping. The small particle size with a high crystallinity was advantageous to an increase in the probability of the reaction of photogenerated electrons and holes with water molecules toward the recombination. Transmission electron microscope observations and extended X-ray absorption fine structure analyses indicated that NiO cocatalysts were loaded on the edge of the nanostep structure of NaTaO(3):La photocatalysts as ultrafine particles. The H(2) evolution proceeded on the ultrafine NiO particles loaded on the edge while the O(2) evolution occurred at the groove of the nanostep structure. Thus, the reaction sites for H(2) evolution were separated from those of O(2) evolution over the ordered nanostep structure. The small particle size and the ordered surface nanostep structure of the NiO/NaTaO(3):La photocatalyst powder contributed to the highly efficient water splitting into H(2) and O(2).  相似文献   

2.
分别采用NaBiO3和Bi(NO3)3为Bi源制备了Bi掺杂NaTaO3光催化剂,研究了Bi离子的价态对NaTaO3光催化分解水制氢性能的影响.采用X射线衍射(XRD)、拉曼光谱、X射线光电子能谱(XPS)和紫外-可见吸收光谱研究了催化剂的晶体结构、Bi离子的化学状态和催化剂的光学吸收性能.以光催化分解水制氢反应研究了Bi离子掺杂NaTaO3的催化性能. XRD结果表明,对于两个不同Bi源掺杂的NaTaO3样品, Bi离子的掺杂没有改变催化剂的单斜相结构,但拉曼光谱证实Bi离子的掺杂致使Ta–O–Ta键角偏离了180o. XPS结果表明,以Bi(NO3)3为Bi源时, Bi离子以Bi3+掺杂于NaTaO3的A位;当以NaBiO3为原料时, Bi3+和Bi5+共掺杂于NaTaO3的A位.两种不同Bi源掺杂得到的样品在紫外-可见吸收光谱中给出了相似的光学吸收,但Bi3+的掺杂对NaTaO3光催化性能影响不大,而Bi3+和Bi5+共掺杂大大提高了NaTaO3的光解水制氢性能. Bi离子取代Na离子在A位的掺杂,在NaTaO3结构中引入了能够促进载流子分离的空位和缺陷;与此同时, Bi的掺杂导致Ta–O–Ta键角偏离180o而不利于载流子迁移.对于Bi3+掺杂的NaTaO3样品,这两种作用相互抵消,使得其催化性能与NaTaO3相比没有变化;而Bi3+和Bi5+的共掺杂和高价态Bi5+的掺杂引入了更多的空位和缺陷,提高了光生电子-空穴的分离效率,从而提高了光催化产氢性能.研究表明,光催化过程中载流子的迁移是影响催化性能的重要因素,而在ABO3钙钛矿结构的A位引入高价态离子是促进光生载流子分离的有效途径.  相似文献   

3.
The photocatalytic activity of (Ga(1-x)Zn(x))(N(1-x)O(x)) loaded with Rh-Cr mixed-oxide (Rh(2-y)Cr(y)O3) nanoparticles for overall water splitting under visible-light irradiation (lambda > 400 nm) is investigated with respect to reaction pH and gas pressure. The photocatalytic performance of the catalyst is found to be strongly dependent on the pH of the reactant solution but largely independent of gas pressure. The present photocatalyst exhibits stable and high photocatalytic activity in an aqueous solution of pH 4.5 for 72 h. The photocatalytic performance is much lower at pH 3.0 and pH 6.2, attributable to corrosion of the cocatalyst and hydrolysis of the catalyst. The dispersion of Rh(2-y)Cr(y)O3 as a cocatalyst on the (Ga(1-x)Zn(x))(N(1-x)O(x)) surface promotes hydrogen evolution, which is considered to be the rate-determining step for overall water splitting on this catalyst.  相似文献   

4.
A versatile synthetic strategy for the preparation of multimetallic oxynitrides has been designed and here exemplarily discussed considering the preparation of nanoscaled zinc–gallium oxynitrides and zinc–gallium–indium oxynitrides, two important photocatalysts of new generation, which proved to be active in key energy related processes from pollutant decomposition to overall water splitting. The synthesis presented here allows the preparation of small nanoparticles (less than 20 nm in average diameter), well-defined in size and shape, yet highly crystalline and with the highest surface area reported so far (up to 80 m2 g−1). X-ray diffraction studies show that the final material is not a mixture of single oxides but a distinctive compound. The photocatalytic properties of the oxynitrides have been tested towards the decomposition of an organic dye (as a model reaction for the decomposition of air pollutants), showing better photocatalytic performances than the corresponding pure phases (reaction constant 0.22 h−1), whereas almost no reaction was observed in absence of catalyst or in the dark. The photocatalysts have been also tested for H2 evolution (semi-reaction of the water splitting process) with results comparable to the best literature values but leaving room for further improvement.  相似文献   

5.
Nanocomposites of tantalum‐based pyrochlore nanoparticles and indium hydroxide were prepared by a hydrothermal process for UV‐driven photocatalytic reactions including overall water splitting, hydrogen production from photoreforming of methanol, and CO2 reduction with water to produce CO. The best catalyst was more than 20 times more active than sodium tantalate in overall water splitting and 3 times more active than Degussa P25 TiO2 in CO2 reduction. Moreover, the catalyst was very stable while generating stoichiometric products of H2 (or CO) and O2 throughout long‐term photocatalytic reactions. After the removal of In(OH)3, the pyrochlore nanoparticles remained highly active for H2 production from pure water and aqueous methanol solution. Both experimental studies and density functional theory calculations suggest that the pyrochlore nanoparticles catalyzed the water reduction to produce H2, whereas In(OH)3 was the major active component for water oxidation to produce O2.  相似文献   

6.
Gold nanoparticles supported on P25 titania (Au/TiO(2)) exhibit photocatalytic activity for UV and visible light (532 nm laser or polychromatic light λ > 400 nm) water splitting. The efficiency and operating mechanism are different depending on whether excitation occurs on the titania semiconductor (gold acting as electron buffer and site for gas generation) or on the surface plasmon band of gold (photoinjection of electrons from gold onto the titania conduction band and less oxidizing electron hole potential of about -1.14 V). For the novel visible light photoactivity of Au/TiO(2), it has been determined that gold loading, particle size and calcination temperature play a role in the photocatalytic activity, the most active material (Φ(H2) = 7.5% and Φ(O2) = 5.0% at 560 nm) being the catalyst containing 0.2 wt % gold with 1.87 nm average particle size and calcined at 200 °C.  相似文献   

7.
The ability of plasmonic nanostructures to efficiently harvest light energy and generate energetic hot carriers makes them promising materials for utilization in photocatalytic water spitting.Apart from the traditional Au and Ag based plasmonic photocatalysts,more recently the noble-metal-free alternative plasmonic materials have attracted ever-increasing interest.Here we report the first use of plasmonic zirconium nitride(ZrN) nanoparticles as a promising photocatalyst for water splitting.Highl...  相似文献   

8.
One of the main targets of studies on water splitting photocatalysts is to develop semiconductor materials with narrower bandgaps capable of overall water splitting for efficient harvesting of solar energy. A series of transition‐metal oxynitrides, LaMgxTa1?xO1+3xN2?3x (x≥1/3), with a complex perovskite structure was reported as the first example of overall water splitting operable at up to 600 nm. The photocatalytic behavior of LaMg1/3Ta2/3O2N was investigated in detail in order to optimize photocatalyst preparation and water‐splitting activity. Various attempts exploring photocatalyst preparation steps, that is, cocatalyst selection, coating material and method, and synthesis method for the oxide precursor, revealed photocatalyst structures necessary for achieving overall water splitting. Careful examination of photocatalyst preparation procedures likely enhanced the quality of the produced photocatalyst, leading to a more homogeneous coating quality and semiconductor particles with fewer defects. Thus, the photocatalytic activity for water splitting on LaMg1/3Ta2/3O2N was largely enhanced.  相似文献   

9.
利用溶胶-凝胶法及光沉积法制备纳米金-钛酸锌(Nano Au-ZnTiO3)复合等离子光催化剂。 采用X射线衍射(XRD)、场发射扫描电子显微镜(FE-SEM)、紫外可见漫反射光谱、荧光光谱、光电流密度、光催化制氢性能等技术手段和测试表征了样品的结构及性能。 结果表明,ZnTiO3在900 ℃煅烧下呈立方相和六角相的混合相,其形貌呈近似球形,粒径约为50~100 nm。 由于纳米金(Nano Au)的表面等离子共振效应,Nano Au-ZnTiO3复合材料在可见光区有较强的吸收,吸收峰位于525 nm处。 Nano Au-ZnTiO3复合等离子光催化剂在可见光激发下呈现出优良的光催化分解水制氢活性。  相似文献   

10.
采用高温固相法合成了可见光响应的Cu和W共掺杂NaTaO3光催化剂NaTaO3: Cu/W, 研究了Cu与W的摩尔比和共掺杂量(摩尔分数)对NaTaO3: Cu/W晶体结构、形貌、光吸收性质和可见光催化分解甲醇水溶液制氢活性的影响规律. 结果表明, Cu, W分别以Cu(Ⅱ)和W(Ⅵ)存在于\{NaTaO3: Cu/W中; Cu, W共掺杂不改变NaTaO3的晶体结构, 但能引起晶格畸变, 减小表面台阶间距; 当固定Cu与W的摩尔比, 增大共掺杂量时, 进入NaTaO3晶格的掺杂离子逐渐增多, 使(020)晶面的衍射峰逐渐向高角度方向移动, 光吸收边红移; 进一步增大共掺杂量, (020)晶面衍射峰则向低角度方向移动. 说明过量的掺杂离子不能有效进入晶格, Cu, W对NaTaO3的掺杂存在最大值; 当Cu与W的摩尔比为1: 2, 1: 3和1: 4时, 最大共掺杂量分别为8%, 6%和4%; NaTaO3: Cu/W在最大共掺杂量时光催化制氢活性明显提高. 其中, NaTaO3: Cu/W的光催化制氢活性在Cu与W的摩尔比为1: 4, 共掺杂量为4%时达到最佳值. 结果表明, Cu, W共掺杂NaTaO3可在一定程度上实现电荷平衡, 降低光生电子和空穴的复合几率, 从而提高光催化活性.  相似文献   

11.
李义磊  王晓静  郝影娟  赵君  刘英  穆惠英  李发堂 《催化学报》2021,42(6):1040-1050,中插56-中插62
通过精细的纳米结构和化学组成控制,开发高效的全解水纳米光催化剂是一项具有挑战性的任务.此外,在光催化水氧化的半反应过程中,抑制纳米材料严重光腐蚀也是一项艰巨的任务,需要有效地提高纳米材料光生空穴转移的动力学.为此,本文通过可控的化学反应,设计制备了具有空间催化活性位点分布的Co-MnO2@CdS/CoS中空立方体顺序材料,并用作可见光催化全解水催化剂.采用MOFs作为自模板,经过连续的阴离子交换和阳离子交换反应,将Co掺杂的氧化助催化剂(纳米片Co-MnO2)和还原助催化剂(纳米粒子CoS)同时整合到中空的立方体CdS纳米材料中,使得超薄的二维纳米片Co-MnO2与立方体的内部界面均匀接触,能够有效地提高空穴的转移效率.同时,CoS纳米粒子均匀分散在CdS纳米材料的壁上,能够有效地转移光生电子,从而提高光生电子-空穴对的分离效率.实验测试表明,Co-MnO2@CdS/CoS中空立方体顺序材料可以为表面氧化-还原反应提供丰富的反应活性位点,同时有助于提高CdS纳米材料光生电子-空穴对的分离和迁移效率.特别是分散在CdS中空立方体壁面上的CoS纳米颗粒被确定为加速氢气生成的还原型助催化剂,能够促进水中氢离子生成氢气;而附着在CdS中空立方体内壁上的Co-MnO2纳米片被确定为促进氧演化动力学的氧化型助催化剂,能够促进水生成氧气.因此,在本实验中,得益于理想的纳米结构和化学组成方面的优势,Co-MnO2@CdS/CoS纳米立方体显示了高效的光催化全解水性能:在没有贵金属作为助催化剂存在时,它显示了很好的整体光催化水分解效率(735.4(H2)和361.1(O2)μmol h-1 g-1),超过了大多数文献报道的CdS基催化剂光解水效率.此外,以420 nm单波长光为入射光,进行了量子效率(AQE)测试,最优的Co-MnO2@CdS/CoS纳米材料的表观AQE达1.32%.本文合成的顺序材料为构筑具有活性位点空间分布的高效全解水催化剂提供了新的思路.  相似文献   

12.
Colloidal gold (Au) nanoparticles were prepared and successfully loaded on titanium(IV) oxide (TiO(2)) without change in the original particle size using a method of colloid photodeposition operated in the presence of a hole scavenger (CPH). The prepared Au nanoparticles supported on TiO(2) showed strong photoabsorption at around 550 nm due to surface plasmon resonance (SPR) of Au and exhibited a photocatalytic activity in mineralization of formic acid in aqueous suspensions under irradiation of visible light (>ca. 520 nm). A linear correlation between photocatalytic activity and the amount of Au loaded, that is, the number of Au nanoparticles, was observed, indicating that the activity of Au/TiO(2) plasmonic photocatalysts can be controlled simply by the amount of Au loading using the CPH method and that the external surface area of Au nanoparticles is a decisive factor in mineralization of formic acid under visible light irradiation. Very high reaction rates were obtained in samples with 5 wt % Au or more, although the rate tended to be saturated. The CPH method can be widely applied for loading of Au nanoparticles on various TiO(2) supports without change in the original size independent of the TiO(2) phase. The rate of CO(2) formation also increased linearly with increase in the external surface area of Au. Interestingly, the TiO(2) supports showed different slopes of the plots. The slope is important for selection of TiO(2) as a material supporting colloidal Au nanoparticles.  相似文献   

13.
The photocatalytic activity of beta-Ge(3)N(4) powder for overall water splitting is successfully enhanced by ammonia treatment at 823 K for 5-24 h at ammonia pressures of 20 MPa or greater. The surface and bulk nitrogen content in the treated samples varies according to the treatment temperature and treatment time, related to the stability of beta-Ge(3)N(4) powder under pressurized ammonia. The change in nitrogen content resulted in a change in the photocatalytic activity for overall water splitting. A beta-Ge(3)N(4) powder treated at 823 K for 5 h under ammonia at 20 MPa exhibited a photocatalytic activity 4 times higher than that of the as-synthesized powder, attributable to a decrease in the density of anion defects in the bulk and surface.  相似文献   

14.
The incorporation of CdS nanoparticles, prepared in reverse micellar systems, into thiol-modified mesoporous silica, such as FM41 (functionalized MCM-41) and FM48 (functionalized MCM-48), has been investigated. The nanoparticles were immobilized in the mesopores via the incorporation of water droplets of the reverse micelles. A particle-sieving effect for FM41 having large (L-FM41, 3.8 nm) and medium (M-FM41, 3.6 nm) pore size was observed, in that the incorporation of the CdS nanoparticles was decreased with increasing particle size and with decreasing pore size of the FM41. Chemical vapor deposition treatment employed to narrow the mesopores of the CdS-FM41 enhanced the stability of CdS nanoparticles against heat treatment. The CdS-FM41 composites demonstrated photocatalytic activity for H(2) generation from 2-propanol aqueous solution, the better photocatalytic activity being obtained with the larger pore size for CdS-L-FM41. Copyright 2001 Academic Press.  相似文献   

15.
Sedimenting colloidal particles may feel a surprisingly strong buoyancy in a mixture with other particles of a considerably larger size. In this paper we investigated the buoyancy of colloidal particles in a concentrated binary suspension in situ in a centrifugal field. After dispersing two different fluorescence-labeled silica nanoparticles with a large size ratio (90 nm and 30 nm, size ratio: 3) in a refractive index matching solvent, we used a multi-wavelength analytical ultracentrifuge to measure the concentration gradients of both particles in situ. The concentration of the 90 nm silica nanoparticles was used to calculate the effective solvent density for the 30 nm silica nanoparticles. The exponential Boltzmann equation for the sedimentation-diffusion equilibrium with locally varying effective solvent density was then used to theoretically predict the concentration gradient of 30 nm silica nanoparticles, which describes the experimental results very well. This finding proves the validity of effective buoyancy in colloidal mixtures and provides a good model to study sedimenting polydisperse colloids.  相似文献   

16.
以工业级硫酸钛为原料,在酸性环境下以EDTA作为络合剂,采用控制沉淀法制备高纯度纳米TiO2。考察了pH值、反应温度、煅烧温度等工艺条件对TiO2颗粒晶型、大小和分布影响。利用TEM、XRD、ICP等手段对产物进行表征,TiO2纯度超过99.9%,粒径为10-20nm,分布均匀。经过对其光催化降解苯酚反应活性实验,结果表明样品具有较好的光催化活性。  相似文献   

17.
Semiconductor photocatalysts are hardly employed for overall water splitting beyond 700 nm, which is due to both thermodynamic aspects and activation barriers. Metallic materials as photocatalysts are known to overcome this limitation through interband transitions for creating electron–hole pairs; however, the application of metallic photocatalysts for overall water splitting has never been fulfilled. Black tungsten nitride is now employed as a metallic photocatalyst for overall water splitting at wavelengths of up to 765 nm. Experimental and theoretical results together confirm that metallic properties play a substantial role in exhibiting photocatalytic activity under red‐light irradiation for tungsten nitride. This work represents the first red‐light responsive photocatalyst for overall water splitting, and may open a promising venue in searching of metallic materials as efficient photocatalysts for solar energy utilization.  相似文献   

18.
A novel colloidal approach toward semiconductor/metal nanocomposites is presented. Organic-soluble anatase TiO(2) nanorods are used for the first time to stabilize Ag nanoparticles in optically clear nonpolar solutions in the absence of specific ligands for silver. Metallic silver is generated upon UV illumination of deaerated TiO(2) solutions containing AgNO(3). The Ag nanoparticles can be obtained in different size-morphological regimes as a function of the irradiation time, due to light-induced photofragmentation and ripening processes. A mechanism for the colloidal stabilization of the silver nanoparticles is tentatively suggested, which regards the TiO(2) nanorods as inorganic stabilizers, thus acting in the same manner as conventional surfactant molecules. The proposed photocatalytic approach offers a convenient method for producing TiO(2)/Ag nanocomposite systems with a certain control over the metal particle size without the use of surfactants and/or additives. Stable colloidal TiO(2)-nanorod-stabilized Ag nanoparticles can be potentially available for a number of applications that require "clean" metal surfaces, such as homogeneous organic catalysis, photocatalysis, and sensing devices.  相似文献   

19.
A new process for controlling the structure of TiO2 from hollow microspheres to highly dispersible nanoparticles has been developed by altering the concentration of tetrabutylammonium hydroxide (TBAH) in the solvothermal reaction of titanium isopropoxide. Robust and size-controllable hollow TiO2 microspheres, constructed by the assembly of 18 nm TiO2 nanoparticles, were synthesized at relatively high TBAH concentration. The diameters of hollow spheres, with a shell thickness of approximately 250 nm, were controlled to 1.5-4 microm by varying the concentration of TBAH in the range of 0.1-0.5 M. After calcination at 450 degrees C, the hollow microspheres were not appreciably deformed and were still floating on the surface of the water. However, highly dispersible TiO2 nanoparticles with an average diameter of 13 nm were obtained at a low TBAH concentration such as 9.2 mM. The colloidal particle size of TiO2 in an aqueous suspension at pH 2 was 12.5-13.5 nm, which indicates that the each nanoparticle is completely separated. The overall procedure is simple and highly reproducible, and large-scale synthesis is available at low cost.  相似文献   

20.
This paper deals with the textural, microstructural and interfacial properties of Au/TiO(2) nanocomposites, in relation to their photocatalytic activity for splitting of water. TiO(2) samples of two different morphologies were employed for dispersing different cocatalysts, such as: Au, Pt, Ag or Cu, for the sake of comparison. The samples were characterized using powder XRD, XPS, UV-visible, thermoluminescence, SEM, HRTEM and SAED techniques. Compared to other metal/TiO(2) photocatalysts, Au/TiO(2) with an optimum gold loading of 1 wt% was found to exhibit considerably higher activity for visible light induced production of H(2) from splitting water in the presence of methanol. Further, the sol-gel prepared TiO(2) (s.TiO(2)), having spherical grains of 10-15 nm size, displayed better photoactivity than a Degussa P25 catalyst. The electron microscopy investigations on s.TiO(2) revealed significant heterogeneity in grain morphology of individual TiO(2) particles, exposure of the lattice planes, metal dispersion, and the interfacial metal/TiO(2) contacts. The gold particles were found to be in a better dispersed state. O(2) TPD experiments revealed that the gold nanoparticles and Au/TiO(2) interfaces may serve as distinct binding sites for adsorbate molecules. At the same time, our thermoluminescence measurements provide an insight into Au-induced new defect states that may facilitate the semiconductor-to-metal charge transfer transition. In conclusion, the superior photocatalytic activity of Au/TiO(2) may relate to the grain morphology of TiO(2), dispersion of gold particles, and the peculiar architecture of metal/oxide heterojunctions; giving rise in turn to augmented adsorption of reactant molecules and their interaction with the photo-generated e(-)/h(+) pair. The role played by methanol as a sacrificial reagent in photocatalytic splitting of water is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号