首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 39 毫秒
1.
4,4-Diphenyl-2,5-cyclohexadienone (1) crystallized as four conformational polymorphs and a record number of 19 crystallographically independent molecules have been characterized by low-temperature X-ray diffraction: form A (P2(1), Z'=1), form B (P1, Z'=4), form C (P1, Z'=12), and form D (Pbca, Z'=2). We have now confirmed by variable-temperature powder X-ray diffraction that form A is the thermodynamic polymorph and B is the kinetic form of the enantiotropic system A-D. Differences in the packing of the molecules in these polymorphs result from different acidic C-H donors approaching the C=O acceptor in C-H...O chains and in synthons I-III, depending on the molecular conformation. The strength of the C-HO interaction in a particular structure correlates with the number of symmetry-independent conformations (Z') in that polymorph, that is, a short C-HO interaction leads to a high Z' value. Molecular conformation (Econf) and lattice energy (Ulatt) contributions compensate each other in crystal structures A, B, and D resulting in very similar total energies: Etotal of the stable form A=1.22 kcal mol(-1), the metastable form B=1.49 kcal mol(-1), and form D=1.98 kcal mol(-1). Disappeared polymorph C is postulated as a high-Z', high-energy precursor of kinetic form B. Thermodynamic form A matches with the third lowest energy frame based on the value of Ulatt determined in the crystal structure prediction (Cerius2, COMPASS) by full-body minimization. Re-ranking the calculated frames on consideration of both Econf (Spartan 04) and Ulatt energies gives a perfect match of frame #1 with stable structure A. Diphenylquinone 1 is an experimental benchmark used to validate accurate crystal structure energies of the kinetic and thermodynamic polymorphs separated by <0.3 kcal mol(-1) (approximately 1.3 kJ mol(-1)).  相似文献   

2.
Predicting the crystal structure of an organic molecule from first principles has been a major challenge in physical chemistry. Recently, the application of Density Functional Theory including a dispersive energy correction (the DFT(d) method) has been shown to be a reliable method for predicting experimental structures based purely on their ranking according to lattice energy. Further validation results of the application of the DFT(d) method to four organic molecules are presented here. The compounds were targets (labelled molecule II, VI, VII and XI) in previous blind tests of crystal structure prediction, and their structures proved difficult to predict. However, this study shows that the DFT(d) approach is capable of predicting the solid state structures of these small molecules. For molecule VII, the most stable (rank 1) predicted crystal structure corresponds to the experimentally observed structure. For molecule VI, the rank 1, 2 and 3 predicted structures correspond to the three experimental polymorphs, forms I, III and II, respectively. For molecules II and XI, their rank 1 predicted structures are energetically more stable than those corresponding to the experimental crystal structures, and were not found amongst the structures submitted by the participants in the blind tests. The rank 1 structure of molecule II is predicted to exist under high pressure, whilst the rank 1 structure predicted for molecule XI has the same space group and hydrogen bonding pattern as observed in the crystal of 1-amino-1-methyl-cyclopropane, which is structurally related to molecule XI. The experimental crystal structure of molecule II corresponds to the rank 4 prediction, 0.8 kJ mol(-1) above the global minimum structure, and the experimental structure of molecule XI corresponds to the rank 2 prediction, 0.4 kJ mol(-1) above the global minimum.  相似文献   

3.
IntroductionThe interactions between molecules involvingaromatic ring systems are of interest because oftheir effects on the structures and aggregation ofimportant biomolecules,on template efficiency in avariety of organic reactions,and on the solid statestructures of a variety oforganic molecules[1] .Con-sistent are the analysis results of more than 2 0 0phenylalanine- phenylalanine interactions in thecrystal structures of various proteins,which leadsto the following conclusions.( 1 ) Direct …  相似文献   

4.
A simultaneous experimental and computational search for polymorphs of chlorothalonil (2,4,5,6-tetrachloro-1,3-benzenedicarbonitrile) has been conducted, leading to the first characterization of forms 2 and 3. The crystal structure prediction study, using a specifically developed anisotropic atom-atom potential for chlorothalonil, gave as the global minimum in the lattice energy a structure that was readily refined against powder diffraction data to the known form 1 (P2(1)/a). The structure of form 2 was solved and refined from powder diffraction data, giving a disordered structure in the Rm (166) space group (Z = 3). It could also be refined against a P1 ordered model, starting from a low-energy hypothetical sheet structure found in the computational search. This shows that the disorder could be associated with the stacking of ordered sheets. The disordered structure for form 2 was later confirmed by single-crystal X-ray diffraction. The structure of form 3, determined from single-crystal diffraction, contains three independent molecules in the asymmetric unit in P2(1) (4) (Z = 6). Powder diffraction showed that this single-herringbone structure was similar to two low-energy structures found in the search. Further analysis confirmed that form 3 has a similar lattice energy and contains elements from both these predicted structures, which can be considered as good approximations to the form 3 structure.  相似文献   

5.
A procedure is reported for the prediction of dense crystal structures of C-, H-, N-, O-, and F-containing organic compounds in the primitive triclinic, monoclinic, and orthorhombic space groups with Z ≤ 4. The crystal environments of molecules in 242 crystal structures have been analyzed to determine the common coordination sphere pattens. This led to the development of the MOLPAK (MOLecular PAcKing) program, which uses a rigid-body molecular structure probe to build packing arrangements (possible crystal structures) in the various space groups. A MOLPAK search, which involves the investigation of all unique orientations of a central molecule and the construction of the appropriate coordination patterns about the central molecule, provides a 3-D map of minimum unit cell volume as a function of the orientation of the central molecule. MOLPAK uses a repulsion-only potential and a preset threshold to place molecules in contact with each other. The 5–10 smallest volume packing arrangements from a search are subjected to a lattice energy minimization refinement with the WMIN program to yield possible crystal structures. The results are described from the analyses of several known compounds starting with the crystal molecular structures as the MOLPAK search probes in the P1, P21, P21/c, and P212121 space groups. In addition, several examples are given in which the search probes were created by AM1 geometry optimization of preliminary molecular models. More extensive data are given in supplementary tables. © 1993 John Wiley & Sons, Inc.  相似文献   

6.
Na(NTO)(H2O)的制备、晶体结构及热力学性质研究   总被引:6,自引:0,他引:6  
利用氢氧化钠溶液与NTO水溶液进行反应制备了标题化合物并培养出单晶。通过X射线单晶结构分析法测定分子结构和晶体结构,其分子式可表示为Na(NTO)(H2O),晶体属单斜晶系,P21/c空间群,晶体学参数为:a=0.6303(1)nm,b=0.8285(1)nm,c=1.1574(2)nm,β=103.85(1)°,V=0.5868(2)nm^3,Dc=1.925g/cm^3,Z=4,F(000)=344,μ=0.238mm^-1,R=0.0259。通过Na(NTO)(H2O)在水中溶解焓的测定,算得其标准生成焓、晶格焓和晶格能。  相似文献   

7.
螯形二羟基主体分子的包结性能与其结构关系的研究   总被引:4,自引:0,他引:4  
报道了螯形主体分子,反式-9,10-二-1'-萘基-9,10-菲二醇(1), 能与多种含氮有机化合物,诸如喹啉、异喹啉、哌啶、二环已胺等形成包化合物; 而反式-9,10-二苄基-9,10-菲二醇(2)则不具有包结性能。还报道了这些 包结化合物的IR,粉末XRD的表征,用~1H NMR谱测定了它们的分子摩尔比,分别为 (1)/喹啉(1:2), (1)/异喹啉(1:2),(1)/哌啶(1:2)和(1)/二环忆胺 (1:2)。用单晶X射线衍射法测定了(1)与二环忆胺包结物以及(2)的结构,结果 表明前者属正交晶系,空间群为Pnca(标准型Pbca),晶胞参数: a = 1.6714(3) nm, b = 1.6875(3) nm, c = 1.7224(3) nm, V = 4.858 nm~3, Z = 8,形成了隧 道型配位笼状包合物。后者属三斜晶系,空间群为P1-bar,晶胞参数: a = 0. 8058(2) nm , b = 0.9715 (2) nm, c = 1.4437(3) nm, α = 109.59(3)°, β = 95.96(3)°, γ = 96.03(2)°, V = 1.0471 nm~3, Z = 2, 还比较了(1)和(2) 的结构差异,分析了(1)的结构和包结性能的关系。  相似文献   

8.
Synthesis and X-ray structure of a new pyrrolo[1,2-b]-pyridazine derivative   总被引:1,自引:0,他引:1  
The synthesis, characterization and X-ray crystal structure of 2-(4-chloro-phenyl)-7-methylpyrrolo[1,2-b]pyridazine are reported. The compound crystallizes in the space group P2(1)/c (No.14) with a =3.8568(1), b = 11.0690(3), c = 26.4243(7) A, beta =92.777(1) degrees and Z = 4. Accurate molecular parameters for the novel heterocyclic system were obtained from intensity data collected at 113K. The molecule assumes a planar conformation in the crystal and the packing is based on pi-pi stacking with interplanar spacing 3.400 ?, typical of aromatic molecules with potential for displaying useful optical properties.  相似文献   

9.
通过3-硝基-1,2,4-三唑-5-酮(NTO)与碳酸锶反应,制备了标题配合物,其结构用单晶分析法测定,所得晶体学参数为:a=1.1034(1)nm,b=2.2742(2)nm,c=0.63398(9)nm,β=101.798(13)ⅲ,V=1.5573(4)nm^3,D~c=1.936g.cm^-^3,Z=2,F(000)=912,μ=35.45cm^-^1;晶体属单斜晶系,空间群为P2~1/c,最终偏离因子R为0.0344。通过标题配合物在水中溶解焓的测定,算得其标准生成焓、晶格焓、晶格能和标准脱水焓。  相似文献   

10.
Chen XF  Cheng P  Liu X  Zhao B  Liao DZ  Yan SP  Jiang ZH 《Inorganic chemistry》2001,40(12):2652-2659
Three oxalate copper(II) complexes, [Cu(bipy)(C(2)O(4))(H(2)O)].2H(2)O (1), [Cu(nphen)(C(2)O(4))(H(2)O)].2H(2)O (2), and [Cu(phen)(C(2)O(4))(H(2)O)].H(2)O (3) (bipy = 2,2'-bipyridine, nphen = 5-nitro-1,10-phenanthroline and phen = 1,10-phenanthroline), have been synthesized and their crystal structures have been determined. Compound 1 crystallizes in the triclinic space group P1 with a = 7.2554(10) A, b = 10.5712(14) A, c = 10.8178(15) A, alpha = 62.086(2) degrees, beta = 77.478(3) degrees, gamma = 81.773(3) degrees, and Z = 2. Compound 2 crystallizes in the triclinic space group P1 with a = 9.582(2) A, b = 10.086(2) A, c = 10.592(2) A, alpha = 64.18(3) degrees, beta = 79.47(3) degrees, gamma = 60.06(3) degrees, and Z = 2. Compound 3 crystallizes in the monoclinic space group P2(1)/n with a = 8.4655(7) A, b = 9.7057(8) A, c = 17.4572(14) A; beta = 103.865(2) degrees, and Z = 4. The crystal structures of all complexes consist of neutral [Cu(L)(C(2)O(4))(H(2)O)] (L = bipy, nphen, and phen) units and one or two lattice water molecules in the unit cell. Each copper atom in 1, 2, and 3 involves a five-coordinate CuN(2)O(2)O' environment, with a distorted square-pyramidal structure. In 1 and 2, two lattice water molecules are around each unit of [CuL(C(2)O(4))(H(2)O)] (L = bipy and nphen) and form two-dimensional networks. Only one lattice water molecule is found in the unit cell of 3 and the two-dimensional structure is different from 1 and 2. The extended three-dimensional structure is formed through pi-pi interactions between layers. The influences of hydrogen bonds and the sizes and Lewis basicity of ligands to the structures were discussed.  相似文献   

11.
X射线衍射法测定了6-对硝基苯基-2-环己烯酸(1)和6-对甲氧苯基-2-环已烯酸(2)的晶体结构。晶体(1)属三斜晶系,空间群为P1,晶胞参数a=10.300,b=8.062,c=7.804A,α=71.39,β=80.40,γ=74.77°,Z=2,偏离因子R=0.073。晶体(2)属单斜晶系,空间群为P2_1/c,晶胞参数a=16.550,b=5.583,c=14.600A,β=116.0°Z=4,偏离因子R=0.048。根据实验结果对成环加成反应的活性和区域选择性进行了讨论。  相似文献   

12.
The reaction of the bismuth silanolates [Bi(OSiR2R')3] (R = R' = Me, Et, iPr; R = Me, R' = tBu) with water has been studied. Partial hydrolysis gave polynuclear bismuth-oxo clusters whereas amorphous bismuth-oxo(hydroxy) silanolates were obtained when an excess of water was used in the hydrolysis reaction. The metathesis reaction of BiCl3 with NaOSiMe3 provided mixtures of heterobimetallic silanolates. The molecular structures of [Bi18Na4O20(OSiMe3)18] (2), [Bi33NaO38(OSiMe3)24].3 C7H8 (3.3 C7H8), [Bi50Na2O64(OH)2(OSiMe3)22].2 C7H8.2H2O (4.2 C7H8.2 H2O), [Bi4O2(OSiEt3)8] (5), [Bi9O7(OSiMe3)13].0.5 C7H8 (6. 0.5C7H8), [Bi18O18(OSiMe3)18)].2C7H8 (7. 2C7H8) and [Bi20O18(OSiMe3)24].3C7H8 (8.3C7H8) are presented and compared with the solid-state structures of [Bi22O26(OSiMe2tBu)14] (9) and beta-Bi2O3. Compound 2 crystallises in the triclinic space group P1 with the lattice constants a = 17.0337(9), b = 19.5750(14), c = 26.6799(16) A, alpha = 72.691(4), beta = 73.113(4) and gamma = 70.985(4) degrees ; compound 3.3C7H8 crystallises in the monoclinic space group P2(1)/n with the lattice constants a = 20.488(4), b = 22.539(5), c = 26.154(5) A and beta = 100.79(3) degrees ; compound 4.2C7H82 H2O crystallises in the monoclinic space group P2(1)/n with the lattice constants a = 20.0518(12), b = 24.1010(15), c = 27.4976(14) A and beta = 103.973(3) degrees ; compound 5 crystallises in the monoclinic space group P2(1)/c with the lattice constants a = 25.256(5), b = 15.372(3), c = 21.306(4) A and beta = 113.96(3) degrees ; compound 6.0.5C7H8 crystallises in the triclinic space group P1 with the lattice constants a = 15.1916(9), b = 15.2439(13), c = 22.487(5) A, alpha = 79.686(3), beta = 74.540(5) and gamma = 66.020(4) degrees ; compound 7.2C7H8 crystallises in the triclinic space group P1 with the lattice constants a = 14.8295(12), b = 16.1523(13), c = 18.4166(17) A, alpha = 75.960(4), beta = 79.112(4) and gamma = 63.789(4) degrees ; and compound 8.3C7H8 crystallises in the triclinic space group P1 with the lattice constants a = 17.2915(14), b = 18.383(2), c = 18.4014(18) A, alpha = 95.120(5), beta = 115.995(5) and gamma = 106.813(5) degrees . The molecular structures of the bismuth-rich compounds are related to the CaF2-type structure. Formally, the hexanuclear [Bi6O8]2+ fragment might be described as the central building unit, which is composed of bismuth atoms placed at the vertices of an octahedron and oxygen atoms capping the trigonal faces. Depending on the reaction conditions and the identity of R, the thermal decomposition of the hydrolysis products [Bi(n)O(l)(OH)(m-)(OSiR3)(3n-(2l-m))] gives alpha-Bi2O3, beta-Bi2O3, Bi12SiO20 or Bi4Si3O12.  相似文献   

13.
The crystal structures of [Pt(NH3)2CPrDCA].H2O (I), [Pt(CH3NH2)2CPrDCA] (II), and [Pt(dmbn) CPrDCA].2.5H2O (III) (where CPrDCA is 1,1-cyclopropanedicarboxylate; dmbn is 2,3-dimethyl-2,3-butyldiamine) are determined. Compound I crystallizes in the orthorhombic space group Pnma with the cell dimensions: a = 6.517(2), b = 9.709(3), c = 14.205(5) A, Z = 4, R = 0.058. Compound II is monoclinic with space group P2(1)/n, a = 9.648(3), b = 8.720(2), c = 12.770(4) A, beta = 107.12(2), Z = 4, R = 0.059. Compound III belongs to the monoclinic system space group P2(1)/m with the cell dimensions: a = 6.494(1), b = 19.638(3), c = 6.606(1)A, beta = 94.44(1), Z = 2, R = 0.038. Electronic structures of the complexes are studied and the correlation between structure of the amine ligands and biological activity of the complexes is explored.  相似文献   

14.
The molecular structures of a number of 2,6-dimesitylphenyl-based (2,6-dimesitylphenyl = Dmp) complexes of the group 3 elements scandium and yttrium as well as of the lanthanide element ytterbium are reported. Reaction of 1 equiv of DmpLi with 1 equiv of MCl(3) (M = Sc, Yb, Y) in tetrahydrofuran at room temperature followed by crystallization from toluene/hexanes at -30 degrees C produces DmpMCl(2)(THF)(2) (M = Sc: 1; M = Yb: 2) and DmpMCl(2)(THF)(3) (M = Y: 3), respectively. The one-pot reaction of DmpLi with 1 equiv of YbCl(3) in tetrahydrofuran at room temperature followed by addition of 1 equiv of KO(t)Bu produces the heterobimetallic monoalkoxide complex DmpYb(THF)(O(t)Bu)(mu-Cl)(2)Li(THF)(2) (4), which was crystallized from toluene/tetrahydrofuran (20:1) at -30 degrees C. Crystal data for 1: monoclinic, P2(1)/n; T = 203 K; a = 10.178(3) A; b = 15.468(3) A; c = 20.132(5) A; beta = 101.85(3) degrees; V = 3102.0(17) A(3); Z' = 4; D(calcd) = 1.228 g cm(-3); R(1) = 5.89%. Crystal data for 2: monoclinic, P2(1)/n; T = 173 K; a = 10.2447(7) A; b = 15.5683(12) A; c = 20.0979(14) A; beta = 101.749(4) degrees; V = 3238.3(5) A(3); Z' = 4; D(calcd) = 1.485 g cm(-3); R(1) = 4.32%. Crystal data for 3: monoclinic, P2(1)/n; T = 203 K; a = 15.950(3) A; b = 11.865(2) A; c = 18.254(3) A; beta = 92.323(3) degrees; V = 3451.9(10) A(3); Z' = 4; D(calcd) = 1.327 g cm(-)(3); R(1) = 4.43%. Crystal data for 4: triclinic, P1; T = 193 K; a = 10.2252(2) A; b = 11.3497(2) A; c = 18.5814(2) A; alpha = 98.7353(6) degrees; beta = 102.8964(6) degrees; gamma = 94.8058(5) degrees; V = 2062.09(5) A(3); Z' = 2; D(calcd) = 1.375 g cm(-3); R(1) = 4.56%. The molecular structures of 1-3 feature monomeric complexes with distorted trigonal-bipyramidal (1 and 2) or octahedral (3) coordination geometry about the metal atom, with the two chlorine atoms occupying the axial positions. 4 represents the first example of an alkoxide derivative of a terphenyl lanthanide complex. The molecular structure of the ate complex 4 exhibits a heavily distorted trigonal-bipyramidal coordination polyhedron about the ytterbium atom, with one of the mu-chlorine atoms and the oxygen atom of the tetrahydrofuran ligand representing the axial positions of the trigonal-bipyramidal arrangement. A terminal alkoxide ligand is another main feature of the molecular structure of complex 4.  相似文献   

15.
The crystal structure of a new hybrid product comprised of two rigid building blocks, namely dirhodium(II) tetraacetate, [Rh(2)(O(2)CCH(3))(4)] (1), and 2,6-diselenaspiro[3.3]heptane, Se(2)C(5)H(8) (2), has been solved ab initio using laboratory source X-ray powder diffraction (XRPD) data. The rigid body refinement approach has been applied to assist in finding an adequate model and to reduce the number of the refined parameters. Complex [Rh(2)(O(2)CCH(3))(4).mu(2)-Se(2)C(5)H(8)-Se,Se'] (3) conforms to the triclinic unit cell with lattice parameters of a = 8.1357(4), b = 8.7736(4), and c = 15.2183(8) A, alpha = 77.417(3), beta = 88.837(3), and gamma = 69.276(4) degrees, V = 989.66(8) A(3), and Z = 2. The centrosymmetric P space group was selected for calculations. The final values of the reduced wR(p), R(p), and chi(2) were calculated at 0.0579, 0.0433, and 5.95, respectively. The structure of 3 is a one-dimensional zigzag polymer built on axial Rh...Se interactions at 2.632(6) A. The 2,6-diselenaspiro[3.3]heptane ligand acts as a bidentate linker bridging dirhodium units via both selenium atoms. The geometrical parameters of individual groups for rigid body refinement have been obtained from X-ray powder data for dirhodium(II) tetraacetate (1) and from single-crystal X-ray diffraction for diselenium molecule 2. The crystal structures of 1 and 2 are reported here for the first time. For 1 indexing based on XRPD data has resulted in the triclinic unit cell P with lattice parameters of a = 8.3392(7), b = 5.2216(5), and c = 7.5264(6) A, alpha = 95.547(10), beta = 78.101(6), and gamma = 104.714(13) degrees, V = 309.51(5) A(3), and Z = 1. The final values were wR(p) = 0.0452, R(p) = 0.0340, and chi(2) = 1.99. The 1D polymeric motif built on axial Rh.O interactions of the centrosymmetric dirhodium units has been confirmed for the solid-state structure of 1. Compound 2,6-diselenaspiro[3.3]heptane (2) conforms to the monoclinic space group P2(1)/c with the unit cell parameters of a = 5.9123(4), b = 19.6400(13), and c = 5.8877(4) A, beta = 108.5500(10) degrees, V = 648.15(8) A(3), and Z = 4.  相似文献   

16.
The structures of three hybrid organic/inorganic halometalate salts are reported, and the layer structures developed are contrasted. Crystal structures of the isostructural N-methylethylenediammonium (MEDA(2+)) and N-ethylethylenediammonium (EEDA(2+)) salts of copper(I) bromide are both triclinic, space group P1, with lattice constants a = 6.284(7), b = 7.842(6), and c = 12.03(1) A, alpha = 84.84(3), beta = 83.08(2), and gamma = 88.00(3) degrees, and V = 586(1) A(3) with Z = 2 for (MEDA)Cu(2)Br(4) while (EEDA)Cu(2)Br(4) has lattice constants a = 6.27(2), b = 7.78(2), and c = 13.12(3) A, alpha = 84.69(4), beta = 78.18(3), and gamma = 88.17(7) degrees, and V = 623(3) A(3) with Z = 2. The dominant inorganic feature in both salts is anionic (CuBr(2))(n)(n-) chains of edge-shared CuBr(4) tetrahedra. The diammonium cations hydrogen bond these chains together into a unique double layer structure. For comparison purposes, the crystal structure of (CHA)PbBr(3) (CHA(+) = cyclohexylammonium) is reported (monoclinic, space group P2(1)/n, a = 8.088(2) A, b = 7.912(2) A, and c = 19.572(4) A, beta = 96.98(4) degrees, and V = 1243.2(4) A(3) with Z = 4). This contains (PbBr(3))(n)(n-) halometalate chains, this time of face-shared PbBr(6) octahedra. However, here the organic cations tie the chains together into the more common single layer structure.  相似文献   

17.
Close packing conflict in a metastable polymorph of the pure title host (Z' = 2, melt crystal m) is resolved in the stable form (Z' = 1, sublimed crystal s) as O-H...O hydrogen bond changes to O-H...pi interaction. Melt crystallization and sublimation show a greater percentage of high Z' structures in CSD statistics.  相似文献   

18.
The lattice energies at zero temperature are calculated, using Lennard-Jones interactions, for a large number of crystal structures associated with ordered binary compounds. In units of the AA interaction length and strength (i.e., sigmaAA= epsilonAA= 1.0) we examine the lowest energy structures, including coexisting phases, across the space of cross-species interactions 0.6< or = sigmaAB< or = 1.1 and 1.0< or = epsilonAB< or = 2.0. The remaining parameters sigmaBB= 0.88 and epsilonBB= 0.5 are chosen so that the parameter space studied includes the space of binary glass-forming alloys. In addition to some large unit cell structures such as Ni3P and PuBr3 appearing among the lowest lattice energies, a number of low-energy structures based on close-packed lattices are found that do not correspond to any experimentally observed crystals. The prevalence and stability of metastable crystal phases at the compositions AB, A2B, and A3B is examined.  相似文献   

19.
Three polymorphic modifications A-C of [Fe(II)(DPPA)(NCS)(2)], where DPPA = (3-aminopropyl)bis(2-pyridylmethyl)amine is a new tetradentate ligand, have been synthesized, and their structures, magnetic properties, and M?ssbauer spectra have been investigated. For polymorph A, variable-temperature magnetic susceptibility measurements as well as M?ssbauer spectroscopy have revealed the occurrence of a rather gradual HS if LS transition without hysteresis, centered at about 176 K. The same methods have shown that polymorph B is paramagnetic over the temperature range 4.5-295 K, whereas polymorph C exhibits a very abrupt S = 2 if S = 0 transition with a hysteresis. The hysteresis width is 8 K, the transitions being centered at T(c) downward arrow = 112 K for decreasing and T(c) upward arrow = 120 K for increasing temperatures. The crystal structures of the three polymorphs have been solved by X-ray diffraction at 298 K. Polymorph A is triclinic, space group P&onemacr; with Z = 2, a = 8.710(2) ?, b = 15.645(2) ?, c = 7.985(1) ?, alpha = 101.57(1) degrees, beta = 112.59(2) degrees, and gamma = 82.68(2) degrees. Polymorph B is monoclinic, space group P2(1)/c with Z = 4, a = 8.936(2) ?, b = 16.855(4) ?, c = 13.645(3) ?, and beta = 97.78(2) degrees. Polymorph C is orthorhombic, space group Pbca with Z = 8, a = 8.449(2) ?, b = 14.239(2) ?, and c = 33.463(5) ?. In the three polymorphs, the asymmetric units are almost identical and consist of one chiral complex molecule with the same configuration and conformation. The distorted [FeN(6)] octahedron is formed by four nitrogen atoms belonging to DPPA and two provided by the cis thiocyanate groups. The two pyridine rings of DPPA are in fac positions. The main differences between the structures of the three polymorphs are found in their crystal packing. The stabilization of the high-spin ground state of polymorph B is tentatively explained by the presence of two centers of steric strain in the crystal lattice resulting in the elongation of the Fe-N(aromatic) distance. The observed hysteresis in polymorph C seems to be due to the existence of an array of intermolecular contacts in the crystal lattice making the spin transition more cooperative than in polymorph A.  相似文献   

20.
The crystal structures of three polymeric bidimensional piperazinium, N,N'-dimethylpiperazinium, and N-benzylpiperazinium hydrate haloplumbates(II) and one polymeric monodimensional N,N'-dimethylpiperazinium hydrate haloplumbate(II) were determined by means of X-ray analysis. The (pipzH2)[PbCl4] salt is monoclinic, space group P2(1)/c, with a = 5.778(2) A, b = 22.612(26) A, c = 9.061(4) A, beta = 95.37(6) degrees, Z = 4; (me2pipzH2)[PbBr4] crystallizes in the monoclinic P2(1) space group with a = 6.101(3) A, b = 18.822(12) A, c = 6.229(2) A, beta = 98.62(4) degrees, Z = 2; the crystals of (me2pipzH2)2[Pb3I10].4H2O are monoclinic, space group P2(1)/c, a = 19.054(4) A, b = 12.239(3) A, c = 18.273(4) A, beta = 93.42(12) degrees, Z = 4; (benzpipzH2)3[Pb2Br10].2H2O crystallizes in the monoclinic P2(1)/c space group with a = 22.380(22) A, b = 9.304(15) A, c = 24.577(25) A, beta = 94.28(11) degrees, Z = 2. Different model type structures, such as one-dimensional linear chain, ribbonlike, and perovskite-like, were observed, and factors governing these structural arrangements are pointed out. The compounds were also investigated by means of thermal and electrical measurements, and correlations between electrical properties and crystal structures were noted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号