首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In capillary electrophoresis (CE), separation of enantiomers of a chiral compound can be achieved through the chiral interactions and/or complex formation between the chiral selector and the enantiomeric analytes on leaving their diastereomeric forms with different stability constants and hence different mobilities. A great number of chiral selectors have been employed in CE and among them macrocyclic antibiotics exhibited excellent enantioselective properties towards a wide number of racemic compounds. The use of azithromycin (AZM) as a chiral selector has not been reported previously. This work reports the use of AZM as a chiral selector for the enantiomeric separations of five chiral drugs and one amino acid (tryptophan) in CE. The enantioseparation is carried out using polar organic mixtures of acetonitrile (ACN), methanol (MeOH), acetic acid and triethylamine as run buffer. The influences of the chiral selector concentration, ACN/MeOH ratio, applied voltage and capillary temperature on enantioseparation are investigated. The results show that AZM is a viable chiral selector in CE for the enantioseparation of the type of chiral drugs investigated.  相似文献   

2.
The four stereoisomers of itraconazole were resolved for the first time by EKC using a CD as chiral selector. A study on the enantiomeric separation ability of different neutral CDs was carried out. Heptakis-2,3,6-tri-O-methyl-beta-CD was shown to provide the highest values for the enantiomeric resolution. The influence of some experimental conditions, such as pH, chiral selector concentration, and temperature, on the enantiomeric separation was also studied. The use of a 100 mM phosphate buffer (pH 2.5), 30 mM in heptakis-2,3,6-tri-O-methyl-beta-CD together with an applied voltage of 30 kV and a temperature of 20 degrees C enabled the separation of the enantiomers of itraconazole with high resolutions (Rs > 3.0). Finally, the method was validated and successfully applied to the quantitation of itraconazole in three pharmaceutical formulations.  相似文献   

3.
Direct chiral separation of chiral peptide nucleic acid (PNA) monomers has been achieved for the first time by capillary electrophoresis (CE) with charged cyclodextrins as chiral selectors added to the electrophoretic buffer. Selectively modified 6-deoxy-6-N-histamino-beta-cyclodextrin and sulfobutyl ether-beta-CD were successfully used as chiral selectors for the enantiomeric separation of chiral monomers based on different aminoethylamino acids bearing thymine or adenine as nucleobases. Chiral separations were obtained at low selector concentrations (1-3 mM) with good enantioselectivity and resolution factors. Separations were optimized as a function of pH in order to exploit the effect of the electrostatic interactions between the oppositely charged selector and selectand. The method has been applied to the analysis of the enantiomeric excess of chiral monomers used for the solid phase synthesis of chiral PNA oligomers. CE chiral analysis showed that a very high enantiomeric purity was generally achieved in the synthesis of all monomers, except for histidine and aspartic acid based monomers in which ca. 10% of the "wrong" enantiomer was always present.  相似文献   

4.
An experimental design approach is described to evaluate the main electrophoretic parameters involved in the enantioseparation of pharmaceuticals by capillary electrophoresis (CE) coupled to electrospray ionization-mass spectrometry (ESI-MS). For all experiments, the partial-filling technique was applied to avoid the chiral selector entering in the mass spectrometer ion source with a negative effect on the electrospray performance. To carry out enantioseparation, a volatile buffer constituted of 20 mM ammonium acetate at pH 4.0, and a polyvinyl alcohol-coated capillary were used. Methadone was employed as the model compound and three different cyclodextrins (CDs), namely sulfobutyl ether-beta-CD, carboxymethylated-beta-CD and hydroxypropyl-beta-CD, were selected in order to study the countercurrent process. Two different experimental designs were chosen: (i) a full-factorial design to examine the effects and significance of the investigated factors, and (ii) a central composite face-centered design to establish the mathematical model of the selected responses in function of experimental factors. The chiral selector concentration, percentage of the capillary filled with the chiral selector, and drying gas nebulization pressure were three relevant factors taken into consideration. For each CD, the methadone enantiomeric resolution, apparent selectivity, and migration time of the second enantiomer were established as responses. The latter were systematically related to experimental parameters with the help of multiple linear regression. It is noteworthy that the behaviour was different in function of the chiral selector charge. Results revealed that the nebulization pressure involved in the electrospray process and the CD concentration had a significant effect on the enantiomeric resolution, while the effect of the separation zone length was less pronounced. Finally, response surfaces were drawn from the mathematical model and experimental conditions were selected to allow a robust determination of methadone enantiomers by CE-MS.  相似文献   

5.
Lin X  Zhao M  Qi X  Zhu C  Hao A 《Electrophoresis》2006,27(4):872-879
A charged highly water-soluble CD derivative, 6-O-(2-hydroxy-3-trimethylammoniopropyl)-beta-CD (herein noted as 6-HPTMA-beta-CD) was synthesized and successfully used as a chiral selector for enantiomeric separation of some acidic compounds by CZE in an uncoated capillary. Substitution with 2-hydroxy-3-trimethylammoniopropyl groups at the primary hydroxyl group of the CD was aimed at influencing the magnitude and selectivity of analyte-CD interactions. The behavior of 6-HPTMA-beta-CD was compared with that of the commercially available quaternary ammonium-beta-CD (QA-beta-CD) under the same separating conditions. The experiments were carried out using a BGE consisting of 50 mM phosphate in the pH range of 4-6 by adding a relatively low concentration of chiral selector (less than 10 mM). The effects of the concentration of CD and the pH of the electrolyte on the resolution of these compounds were studied.  相似文献   

6.
Capillary electrophoresis methods were developed for the enantiomeric separation of 27 citalopram analogues. Sulfated β‐cyclodextrin was the most broadly selective and useful chiral selector. The separations of most of the citalopram analogue compounds reported in this work have not been reported previously. Excellent enantiomeric separations were obtained for 26 out of 27 compounds, and most of the separations were achieved within 10 min. The effects of chemical parameters such as chiral selector types, buffer types, chiral selector and buffer concentrations, buffer pH and organic modifiers on the separation were investigated. The influence of analyte structure on separation also was examined and discussed.  相似文献   

7.
The results of gas chromatographic enantiomeric separations of selected non-polar and polar test solutes (limonene and 1-phenylethanol) using two different derivatives of β-cyclodextrin, permethyl-β-CD and 2,3-dimethyl-tert-butyldimethylsilyl-β-CD (PMCD and TBCD) are interpreted in combination with the conclusions from molecular modelling calculations based on docking experiments. A comparison of the two selectors which were used as solution in a polysiloxane matrix (OV 1701) indicated that the less flexible TBCD which is blocked on one side by the bulky tert-butyldimethylsilyl groups seems to possess advantages for certain chiral separations, especially of the non-polar type. The special properties of TBCD as selector are also demonstrated by chiral separations of other compounds.  相似文献   

8.
The present paper deals with the enantiomeric separation of nuarimol enantiomers by affinity EKC-partial filling technique using HSA as chiral selector. Firstly, a study of nuarimol interactions with HSA by CE-frontal analysis was performed. The binding parameters obtained for the first site of interaction were n(1) = 0.84; K(1) = 9.7 +/- 0.3x10(3 )M(-1) and the protein binding percentage of nuarimol at physiological concentration of HSA was 75.2 +/- 0.2%. Due to the moderate affinity of nuarimol towards HSA the possibility of using this protein as chiral selector for the separation of nuarimol using the partial filling technique was evaluated. A multivariate optimization approach of the most critical experimental variables in enantioresolution, running pH, HSA concentration and plug length was carried out. Separation of nuarimol enantiomers was obtained under the following selected conditions: electrophoretic buffer composed of 50 mM Tris at pH 7.3; 160 muM HSA solution applied at 50 mbar for 156 s as chiral selector; nuarimol solutions in the range of 2-8x10(-4) M injected hydrodynamically at 30 mbar for 2 s and the electrophoretic runs performed at 30 degrees C applying 15 kV voltage. Resolution, accuracy, reproducibility speed and cost of the proposed method make it suitable for quality control of the enantiomeric composition of nuarimol in formulations and for further toxicological studies. The results showed a different affinity between nuarimol enantiomers towards HSA.  相似文献   

9.
The enantiomeric separation of 37 clinically used racemic basic drugs among 50 drugs was achieved using sulfated β-cyclodextrin (S-β-CD) as chiral selector at pH2.5 and in the reversed polarity mode. The results obtained in this study were different from the one obtained using neutral β-CD and its derivatives as chiral selectors. Using S-β-CD as chiral selector did not require the presence of the substructure 4H to achieve chiral separation as observed with β-Cyclodextrin (β-CD) and its derivatives since among the 37 separated drugs only 7 possess the 4H substructure. The chiral discrimination depends on the appropriate interaction between the analyte and the sulfated β-cyclodextrin.  相似文献   

10.
The enantiomeric composition of the chiral flavoring agent limonene was analyzed by means of a quartz-crystal microbalance (QCM) sensor. As chiral selectors three different modified beta-cyclodextrins were investigated. The selector molecules were applied as mixtures in different polysiloxane matrices. The chiral separation factors alpha for limonene obtained at 30 degrees C by gas chromatography and by use of the QCM sensor were comparable. Evaluation of sensor data was performed by use of an artificial neuronal network (ANN); this enabled prediction of the enantiomeric composition of the gas mixtures.  相似文献   

11.
林秀丽  李关宾  主沉浮  吴培  关亚风 《色谱》2001,19(2):109-111
 建立了一种以L 白氨酸为手性选择剂用毛细管区带电泳法快速分离 12种手性药物的方法。实验结果表明 ,手性对映体的分离度受L 白氨酸浓度和缓冲液 pH的影响。在含有 70mmol/LL 白氨酸 ,5 0mmol/L硼砂 (pH9.0 )的溶液中 ,12种手性药物在 11min之内得到了基线分离。  相似文献   

12.
The enantiomeric resolution of N-t-butyloxycarbonyl (N-t-Boc) amino acids D/L isomers by reversed-phase HPLC was investigated using cyclodextrins (CD's) as chiral selectors for the mobile phase. The use of a low pH (pH<4) for the mobile phase enabled the enantioseparation of N-t-Boc amino acids. The opposite elution order of D/L isomers was observed when hydroxypropyl-derivatized beta-CD was used instead of native beta-CD. A computer simulation of the enantioseparation showed that the ratio of the retention factors of the chiral selector and the sample determined the elution order and the resolution. When the retention factor of the chiral selector is smaller than that of the sample, an isomer having larger complex formation constant eluted faster. However, when the chiral selector had a larger retention factor than the sample, an opposite elution order of the isomers was obtained. The large difference in the retention factors between the chiral selector and the sample led to good enantiomeric separation.  相似文献   

13.
A capped derivative of beta-CD (THALAH) was synthesized and characterized by NMR spectroscopy at different pH values. A trehalose moiety, bonded through beta-alanine bridges to the CD cavity, is included in the capping unit, giving peculiar properties to this molecule. The hemispherodextrin thus obtained was tested as a chiral selector in EKC. At neutral pH, the monocationic species of THALAH behaves as a very efficient selector separating successfully all the 11 tested enantiomeric pairs of dansyl-derivatives of amino acids, some of them even at concentrations as low as 0.15 mM. The differences observed in the migration order among the different systems give suggestions about the mechanism of molecular recognition between the selector and the analytes.  相似文献   

14.
《Tetrahedron: Asymmetry》2005,16(4):801-807
Chiral recognition by positive ion electrospray ionization (ESI) mass spectrometry is demonstrated through the adaptation of chromatographically derived chiral recognition systems. Solutions of soluble analogues of chiral selectors used in Pirkle-type chiral stationary phases, when mixed with a chiral analyte, whose enantiomers are known to be resolved on the analogous chiral stationary phase, are shown to afford selector–analyte complexes in the mass spectrum. Pseudo-enantiomeric chiral selectors, where each pseudo-enantiomer has a different mass and a higher affinity for the opposite analyte enantiomer of its pseudo-antipode, were prepared. When mixed with a chiral analyte, solutions of these pseudo-enantiomeric selectors afford selector–analyte complexes in the ESI-mass spectrum where the relative intensities of the selector–analyte complexes are dependent on the enantiomeric composition of the analyte. Additionally, the sense of the observed chiral recognition is in agreement with the sense of chiral recognition observed chromatographically.  相似文献   

15.
The growing number of chiral new drug substances requires increasing efforts in developing enantioselective methods. According to International conference on Harmonization guidelines, one should quantify the enantiomeric impurity of 0.1% relative to the major constituent. Capillary electrophoresis has evolved into an important tool for the separation of chiral drugs. The common strategies consist of two steps: firstly, initial separation conditions are evaluated. This screening usually focuses on the selection of the appropriate chiral selector. In our study 22 neutral, anionic or cationic cyclodextrins were dissolved in phosphate buffer (pH 2.5, 50 mM, CD conc.: 2.0%). Then they were investigated for the separation of 14 chiral compounds. Secondly, the obtained initial conditions for the enantiomeric separation were optimized in terms of resolution and analysis time. In our approach, important optimized factors including the concentration of the chiral selector (1-10%), the pH of the buffer (2.0-9.0), and the percentage of organic modifier (0-15%) were studied.This common strategy was completed by elaborating final requirements for the quantification of the enantiomeric impurity. A resolution between 3 and 4 was found to be necessary for the racemic mixture during the screening and optimization steps, in order to later allow for peak overloading and thus to sufficiently increase the signal-to-noise ratio. The complete strategy was conducted for atenolol, isoprenaline, verapamil and mandelic acid.  相似文献   

16.
Herein we focused on using a novel separation technology, solvent sublation, for the enantioseparation of α-cyclohexylmandelic acid (CHMA). The experiment was carried out in a conventional bubble column using d-iso-butyl tartrate (d-IBTA) and sodium dodecyl sulfate (SDS) as a chiral selector and surfactant, respectively (Fig. 7). Several important parameters influencing the separation performance, such as the type of organic phase, the pH in the aqueous phase, and the concentrations of CHMA, d-IBTA, and SDS were investigated. Under the optimal operating conditions, the enantiomeric excess and separation factor were 54.85% and 4.5, respectively. The yields of d-enantiomer and l-enantiomer were 82.20% and 38.94%, respectively. Finally, the thermodynamic properties of the separation were investigated, which indicated an enthalpy-controlled process. This technique is an efficient chiral separation method, with many advantages, such as low amounts of organic solvent and chiral selector required and easier realization of the multi-stage operation.  相似文献   

17.
In a recent study, opposite enantiomer elution order was observed for ketoprofen enantiomers on two amylose-phenylcarbamate-based chiral columns with the same chemical composition of the chiral selector but in one case with coated while in the other with an immobilized chiral selector. In the present study, the influence of this uncommon effect on method validation parameters for the determination of minor enantiomeric impurity in dexketoprofen was studied. The validated methods with two alternative elution orders for enantiomers were applied for the evaluation of enantiomeric impurity in six marketed dexketoprofen formulations from various vendors. In most of these formulations except one the content of enantiomeric impurity exceeded 0.1% (w/w).  相似文献   

18.
Zhou L  Lin Z  Reamer RA  Mao B  Ge Z 《Electrophoresis》2007,28(15):2658-2666
Optical pure (+)-(18-crown-6)-2,3,11,12-tetracarboxylic acid, a chiral crown ether, was successfully used as a chiral selector for the stereoisomeric separation of numerous real pharmaceutical compounds. Both practical and mechanistic aspects were described. Effects of chiral selector concentration under different pH values of BGE were discussed. Chiral recognition for the enantiomeric compounds with (+)-(18-crown-6)-2,3,11,12-tetracarboxylic acid was investigated through model compounds using CE and infrared spectroscopic techniques. Relations between the enantioselectivity of the chiral crown ether and the structural features of the studied compounds were also investigated. Unusual resolutions of compound-p and its enantiomer as well as compound-o and its 2b epimer were described. These compounds contained only tertiary amine, believed to be nonbinding with crown ethers in general. The possible mechanisms for the interaction between compound-o and the chiral crown ether were investigated using CE, electrospray MS (ESI-MS), and proton ((1)H) NMR spectroscopy. All experiments provided clear evidence that binding between compound-o and the chiral crown ether had occurred. ESI-MS spectra indicated that the complexes had a 1:1 stoichiometric ratio. The advantages and disadvantages of using chiral crown ether for stereoisomeric separations were compared with those using sulfated CDs.  相似文献   

19.
The enantioseparation of the enantiomeric pairs of 10 Dns derivatives of α-amino acids was successfully carried out by using for the first time the 3-amino derivative of the γ-cyclodextrin. The effects of pH and selector concentration on the migration times and the resolutions of analytes were studied in detail. 3-Deoxy-3-amino-2(S),3(R)-γ-cyclodextrin (GCD3AM) shows very good chiral recognition ability even at very low concentrations at all the three investigated values of pH, as shown by the very large values of selectivity and resolution towards several pairs of amino acids. The role played by the cavity, the substitution site and the protonation equilibria on the observed properties of chiral selectivity, on varying the specific amino acid involved, is discussed.  相似文献   

20.
Summary Six different cyclodextrins with varying cavity size and rim substitution were used as chiral agents for the enantiomeric separation of eight chromane compounds or analogues using capillary electrophoresis. It is shown that the cyclodextrin type and concentration have a large influence on the enantiomeric separation obtained for these compounds. A chiral resolution of 1.4 or better could be obtained for all the substances with either substituted heptakis(2,3,6-tri-O-methyl)-β-cyclodextrin or unsubstituted γ-cyclodextrin as the chiral selector. The influence of the γ-cyclodextrin concentration, ionic strength and pH on the chiral separations was also investigated with a multivariate screening design. The detection limit and resolution of the present method allow determinations of the investigated compounds down to a chiral impurity of less than 0.1 % (area/area).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号