首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
New catalysts for the isospecific polymerization of 1-hexene based on cationic zirconium complexes incorporating the tetradentate fluorous dialkoxy-diamino ligands [OC(CF(3))(2)CH(2)N(Me)(CH(2))(2)N(Me)CH(2)C(CF(3))(2)O](2-) [(ON(2)NO)(2-)] and [OC(CF(3))(2)CH(2)N(Me)(1R,2R-C(6)H(10))N(Me)CH(2)C(CF(3))(2)O](2-) [(ON(Cy)NO)(2-)] have been developed. The chiral fluorous diamino-diol [(ON(Cy)NO)H(2), 2] was prepared by ring-opening of the fluorinated oxirane (CF(3))(2)COCH(2) with (R,R)-N,N'-dimethyl-1,2-cyclohexanediamine. Proligand 2 reacts cleanly with [Zr(CH(2)Ph)(4)] and [Ti(OiPr)(4)] precursors to give the corresponding dialkoxy complexes [Zr(CH(2)Ph)(2)(ON(Cy)NO)] (3) and [Ti(OiPr)(2)(ON(Cy)NO)] (4), respectively. An X-ray diffraction study revealed that 3 crystallizes as a 1:1 mixture of two diastereomers (Lambda-3 and Delta-3), both of which adopt a distorted octahedral structure with trans-O, cis-N, and cis-CH(2)Ph ligands. The two diastereomers Lambda-3 and Delta-3 adopt a C(2)-symmetric structure in toluene solution, as established by NMR spectroscopy. Cationic complexes [Zr(CH(2)Ph)(ON(2)NO)(THF)(n)](+) (n=0, anion=[B(C(6)F(5))(4)](-), 5; n=1, anion=[PhCH(2)B(C(6)F(5))(3)](-), 6) and [Zr(CH(2)Ph)(ON(Cy)NO)(THF)](+)[PhCH(2)B(C(6)F(5))(3)](-) (7) were generated from the neutral parent precursors [Zr(CH(2)Ph)(2)(ON(2)NO)] (H) and [Zr(CH(2)Ph)(2)(ON(Cy)NO)] (3), and their possible structures were determined on the basis of (1)H, (19)F, and (13)C NMR spectroscopy and DFT methods. The neutral zirconium complexes H and 3 (Lambda-3/Delta-3 mixture), when activated with B(C(6)F(5))(3) or [Ph(3)C](+)[B(C(6)F(5))(4)](-), catalyze the polymerization of 1-hexene with overall activities of up to 4500 kg PH mol Zr(-1) h(-1), to yield isotactic-enriched (up to 74 % mmmm) polymers with low-to-moderate molecular weights (M(w)=4800-47 200) and monodisperse molecular-weight distributions (M(w)/M(n)=1.17-1.79).  相似文献   

2.
The epoxidation of allylic alcohols is shown to be efficiently and selectively catalyzed by the oxidatively resistant sandwich-type polyoxometalates, POMs, namely [WZnM(2)(ZnW(9)O(34))(2)](q)(-) [M = OV(IV), Mn(II), Ru(III), Fe(III), Pd(II), Pt(II), Zn(II); q = 10-12], with organic hydroperoxides as oxygen source. Conspicuous is the fact that the nature of the transition metal M in the central ring of polyoxometalate affects significantly the reactivity, chemoselectivity, regioselectivity, and stereoselectivity of the allylic alcohol epoxidation. For the first time, it is demonstrated that the oxovanadium(IV)-substituted POM, namely [ZnW(VO)(2)(ZnW(9)O(34))(2)](12-), is a highly chemoselective, regioselective, and also stereoselective catalyst for the clean epoxidation of allylic alcohols. A high enantioselectivity (er values up to 95:5) has been achieved with [ZnW(VO)(2)(ZnW(9)O(34))(2)](12)(-) and the sterically demanding TADOOL-derived hydroperoxide TADOOH as regenerative chiral oxygen source. Thus, a POM-catalyzed asymmetric epoxidation of excellent catalytic efficiency (up to 42 000 TON) has been made available for the development of sustainable oxidation processes. The high reactivity and selectivity of this unprecedented oxygen-transfer process are mechanistically rationalized in terms of a peroxy-type vanadium(V) template.  相似文献   

3.
Reactions of 2,6-dibromo-, 3,5-dibromo-, and 2,4,6-tribromopyridine with IZnCH(2)CH(2)R(f8) (R(f8) = (CF(2))(7)CF(3)) in THF at 65 degrees C in the presence of trans-Cl(2)Pd(PPh(3))(2) (5 mol %) gave the fluorous pyridines 2,6- and 3,5-NC(5)H(3)(CH(2)CH(2)R(f8))(2) (1 and 2; 85%, 31%) and 2,4,6-NC(5)H(2)(CH(2)CH(2)R(f8))(3) (3, 61%). Reaction of 2,6-pyridinedicarboxaldehyde with [Ph(3)PCH(2)CH(2)R(f8)](+)I(-)/K(2)CO(3) (p-dioxane/H(2)O, 95 degrees C) gave 2,6-NC(5)H(3)(CH[double bond]CHCH(2)R(f8))(2) (95%; 70:30 ZZ/ZE), which was treated with H(2) (1 atm, 12 h) and 10% Pd/C to yield 2,6-NC(5)H(3)(CH(2)CH(2)CH(2)R(f8))(2) (5, 95%), a higher homologue of 1. Longer reaction times afforded piperidine cis-2,6-HNC(5)H(8)(CH(2)CH(2)CH(2)R(f8))(2) (6, 98%). The stereochemistry was established by NMR analysis of the N-benzylpiperidine. Pyridines 1-3 and 5 are low-melting white solids with CF(3)C(6)F(11)/toluene partition coefficients (24 degrees C) of 93.8:6.2, 93.9:6.1, >99.7:<0.3, and 90.4:9.6, respectively (6, 93.6:6.4). Reaction of 1 and CF(3)SO(3)H gave a pyridinium salt, and Cl(2)Pd(NCCH(3))(2) (0.5 equiv) yielded trans-Cl(2)Pd(1)(2). The crystal structure of the former, which also exhibited liquid crystalline and ionic liquid phases, was determined.  相似文献   

4.
The reaction between polyoxometalate (POM) [TBA](12)[WZn{Zn(H(2)O)}(2)(ZnW(9)O(34))(2)] (TBA = tetrabutyl ammonium) and lanthanide (Ln) nitrate (Ln = La, Eu and Tb) in a mixed solvent of CH(3)CN and DMF yielded three noncentrosymmetric diamondoid Ln-POM solid materials, {[Ln(2)(DMF)(8)(H(2)O)(6)][ZnW(12)O(40)]}·4DMF (Ln-POM; Ln = La, Eu and Tb). In these compounds, the {ZnW(12)O(40)} unit, transferred from the metastable [WZn{Zn(H(2)O)}(2)(ZnW(9)O(34))(2)] cluster, acts as a tetradentate ligand to connect with four Ln nodes, while the Ln ion links up two {ZnW(12)O(40)} units. These compounds generated interesting luminescence emissions that are dependent on the Ln ions and their ratios. White light emission was obtained by a doped approach with a rational ratio of the Eu(3+) and Tb(3+) ions.  相似文献   

5.
Four bis-tetradentate N(4)-substituted-3,5-{bis[bis-N-(2-pyridinemethyl)]aminomethyl}-4H-1,2,4-triazole ligands, L(Tz1)-L(Tz4), differing only in the triazole N(4) substituent R (where R is amino, pyrrolyl, phenyl, or 4-tertbutylphenyl, respectively) have been synthesized, characterized, and reacted with M(II)(BF(4))(2)·6H(2)O (M(II) = Cu, Ni or Co) and Co(SCN)(2). Experiments using all 16 possible combinations of metal salt and L(TzR) were carried out: 14 pure complexes were obtained, 11 of which are dinuclear, while the other three are tetranuclear. The dinuclear complexes include two copper(II) complexes, [Cu(II)(2)(L(Tz2))(H(2)O)(4)](BF(4))(4) (2), [Cu(II)(2)(L(Tz4))(BF(4))(2)](BF(4))(2) (4); two nickel(II) complexes, [Ni(II)(2)(L(Tz1))(H(2)O)(3)(CH(3)CN)](BF(4))(4)·0.5(CH(3)CN) (5) and [Ni(II)(2)(L(Tz4))(H(2)O)(4)](BF(4))(4)·H(2)O (8); and seven cobalt(II) complexes, [Co(II)(2)(L(Tz1))(μ-BF(4))](BF(4))(3)·H(2)O (9), [Co(II)(2)(L(Tz2))(μ-BF(4))](BF(4))(3)·2H(2)O (10), [Co(II)(2)(L(Tz3))(H(2)O)(2)](BF(4))(4) (11), [Co(II)(2)(L(Tz4))(μ-BF(4))](BF(4))(3)·3H(2)O (12), [Co(II)(2)(L(Tz1))(SCN)(4)]·3H(2)O (13), [Co(II)(2)(L(Tz2))(SCN)(4)]·2H(2)O (14), and [Co(II)(2)(L(Tz3))(SCN)(4)]·H(2)O (15). The tetranuclear complexes are [Cu(II)(4)(L(Tz1))(2)(H(2)O)(2)(BF(4))(2)](BF(4))(6) (1), [Cu(II)(4)(L(Tz3))(2)(H(2)O)(2)(μ-F)(2)](BF(4))(6)·0.5H(2)O (3), and [Ni(II)(4)(L(Tz3))(2)(H(2)O)(4)(μ-F(2))](BF(4))(6)·6.5H(2)O (7). Single crystal X-ray structure determinations revealed different solvent content from that found by microanalysis of the bulk sample after drying under a vacuum and confirmed that 5', 8', 9', 11', 12', and 15' are dinuclear while 1' and 7' are tetranuclear. As expected, magnetic measurements showed that weak antiferromagnetic intracomplex interactions are present in 1, 2, 4, 7, and 8, stabilizing a singlet spin ground state. All seven of the dinuclear cobalt(II) complexes, 9-15, have similar magnetic behavior and remain in the [HS-HS] state between 300 and 1.8 K.  相似文献   

6.
A series of fluorous derivatives of group 10 complexes MCl(2)(dppe) and [M(dppe)(2)](BF(4))(2) (M = Ni, Pd or Pt; dppe = 1,2-bis(diphenylphosphino)ethane) and cis-PtCl(2)(PPh(3))(2) was synthesized. The influence of para-(1H,1H,2H,2H-perfluoroalkyl)dimethylsilyl-functionalization of the phosphine phenyl groups of these complexes, as studied by NMR spectroscopy, cyclovoltammetry (CV), XPS analyses, as well as DFT calculations, points to a weak steric and no significant inductive electronic effect. The steric effect is most pronounced for M = Ni and leads in the case of NiCl(2)(1c) (3c) and [Ni(1c)(2)](BF(4))(2) (7c) (1c = [CH(2)P[C(6)H(4)(SiMe(2)CH(2)CH(2)C(6)F(13))-4](2)](2)) to a tetrahedral distortion from the expected square planar geometry. The solubility behavior of NiCl(2)[CH(2)P[C(6)H(4)(SiMe(3-b)(CH(2)CH(2)C(x)F(2x+1)b)-4](2)](2) (3: b = 1-3; x = 6, 8) in THF, toluene, and c-C(6)F(11)CF(3) was found to follow the same trends as those observed for the free fluorous ligands 1. A similar correlation between the partition coefficient (P) of complexes 3 and free 1 was observed in fluorous biphasic solvent systems, with a maximum value obtained for 3f (b = 3, x = 6, P = 23 in favor of the fluorous phase).  相似文献   

7.
Lu N  Shing JS  Tu WH  Hsu YC  Lin JT 《Inorganic chemistry》2011,50(10):4289-4294
A new series of amphiphilic heteroleptic ruthenium(II) sensitizers with a fluorous bis-ponytailed bipyridine ancillary ligand, [Ru(H(2)dcbpy)(4,4'-bis(R(f)CH(2)OCH(2))-2,2'-bpy)(NCS)(2)] [where R(f) = HCF(2)CF(2) (CT4), C(3)F(7) (CT7), and HCF(2)CF(2)CF(2)CF(2) (CT8)], have been synthesized and fully characterized by UV/vis, visible emission, NMR, fast atom bombardment mass spectrometry, and cyclic voltammetric studies. Dye-sensitized solar cells (DSCs) based on these dyes exhibit efficiencies comparable with that of the standard cell based on N719. The conversion efficiency of a CT7- or CT8-based DSC is ~9% higher than that of Z907 with a nonfluorous bis-ponytailed bipyridine ancillary ligand. The fluorous chains were found to increase the dye density on TiO(2) and to help to suppress the dye desorption.  相似文献   

8.
Iodinations of the ortho, meta, and para fluorous arenes (R(f8)CH(2)CH(2)CH(2))(2)C(6)H(4) (R(f8)=(CF(2))(7)CF(3)) with I(2)/H(5)IO(6) in AcOH/H(2)SO(4)/H(2)O give 3,4-(R(f8)CH(2)CH(2)CH(2))(2)C(6)H(3)I (5) and the analogous 2,4- (6) and 2,5- (7) isomers, respectively. Spectroscopic yields are >90 %, but 5 and 7 must be separated by chromatography from by-products (yields isolated: 70 %, 97 %, 61 %). Reaction of 1,3,5-(R(f8)CH(2)CH(2)CH(2))(3)C(6)H(3) with PhI(OAc)(2)/I(2) gives 2,4,6-(R(f8)CH(2)CH(2)CH(2))(3)C(6)H(2)I (8) on multigram scales in 97 % yield. The CF(3)C(6)F(11)/toluene partition coefficients of 5-8 (24 degrees C: 69.5:30.5 (5), 74.7:25.3 (6), 73.9:26.1 (7), 98.0:2.0 (8)) are lower than those of the precursors, but CF(3)C(6)F(11)/MeOH gives higher values (97.0:3.0 (5), 98.6:1.4 (6), 98.0:2.0 (7), >99.3:<0.3 (8)). Reactions of 5-8 with excess NaBO(3) in AcOH yield the corresponding ArI(OAc)(2) species 9-12 (9, 85 % as a 90:10 9/5 mixture; 10, 97 %; 11, 95 %; 12, 93 % as a 95:5 12/8 mixture). These rapidly oxidize 1,4-hydroquinones in MeOH. Subsequent additions of CF(3)C(6)F(11) give liquid biphase systems. Solvent removal from the CF(3)C(6)F(11) phases gives 5-8 in >99-98 % yields, and solvent removal from the MeOH phases gives the quinone products, normally in >99-95 % yields. The recovered compounds 5-8 are easily reoxidized to 9-12 and used again.  相似文献   

9.
The reaction of dinuclear copper(II) cryptates with calcium cyanamide, CaNCN, and sodium dicyanamide, Na[N(CN)(2)] results in dinuclear compounds of formulae [Cu(2)(HNCN)(R3Bm)](ClO(4))(3) (1), [Cu(2)(dca)(R3Bm)](ClO(4))(3)4H(2)O (2), and [Cu(2)(NCNCONH(2))(R3Bm)](CF(3)SO(3))(3) (3), in which R3Bm=N[(CH(2))(2)NHCH(2)(C(6)H(4)-m)CH(2)NH(CH(2))(2)](3)N and dca=dicyanamido ligand (NCNCN(-)). The X-ray diffraction analysis reveals for both 1 and 3 a dinuclear entity in which the copper atoms are bridged by means of the -NCN- unit. The molar magnetic susceptibility measurements of 1-3 in the 2-300 K range indicate ferromagnetic coupling. The calculated J values, by using theoretical methods based on density functional theory (DFT) are in excellent agreement with the experimental data. Catalytic hydration of a nitrile to an amide functional group is assumed responsible for the formation of 3 from a mu(1,3)-dicyanamido ligand.  相似文献   

10.
This fluorous biphasic catalysis (FBC) contribution was focused on the synthesis and characterization of new fluorous soluble R(f)-Cu(II) carboxylate complexes containing nonfluoroponytailed ligands and defines their role as precatalysts for the FBC oxidation of alkenols and alcohols in the presence of 2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPO)/O(2). In this FBC approach, we have utilized the phase-switching technique of Vincent et al. (J. Am. Chem. Soc. 2002, 124, 12942) to solubilize the nonfluoroponytailed ligands, N-1,4,7-Me(3)TACN, 2, and N-1,4,7-pentamethyldiethylenetriamine (PMDETA), 3, by reaction with a fluorous solvent-soluble copper (II) dimeric complex, [Cu({C(8)F(17)(CH(2))(2)}(2)CHCO(2))(2)](2), 1. Moreover, the reaction of nonfluoroponytailed ligands 2 and 3 with 1 afforded new perfluoroheptane-soluble Cu(II) complexes, [Cu({C(8)F(17)(CH(2))(2)}(2)CHCO(2))(2)(2)], 4, and [Cu({C(8)F(17)(CH(2))(2)}(2)CHCO(2))(2) (3)], 5, respectively. The known Cu(II) complex, 1, was further characterized by electron paramagnetic resonance (EPR) spectroscopy confirming its dimeric structure, while 4 and 5 were characterized by elemental analysis, IR, diffuse reflectance UV-vis, and EPR spectroscopy. Furthermore, 1, 4, and 5 were evaluated as precatalysts for alkenol and alcohol oxidation. The oxidation reactions of alkenols and alcohols in the presence of TEMPO/O(2) proceeded under FBC conditions for 1, 4, and 5, but 1-octanol was unreactive under single-phase FBC conditions at 90 degrees C with TEMPO/O(2). The thermomorphic property of 5, soluble in chlorobenzene/toluene at 90 degrees C but insoluble at room temperature, was also evaluated in the selective oxidation of p-nitrobenzyl alcohol to p-nitrobenzaldehyde. Plausible mechanisms concerning these FBC/thermomorphic oxidation reactions will be discussed.  相似文献   

11.
Shi LX  Zhao WF  Xu X  Tang J  Wu CD 《Inorganic chemistry》2011,50(24):12387-12389
A 1D anionic polyoxometalate, [Mn(4)(H(2)O)(18)WZnMn(2)(H(2)O)(2)(ZnW(9)O(34))(2)](4-), undergoes 1D to 3D single-crystal-to-single-crystal structural transformations that are induced by transition-metal cations (Co(2+) and Cu(2+)) and solvent molecules. These solid materials present interesting catalytic activity for the oxidative aromatization of Hantzsch 1,4-dihydropyridines that is dependent on the inserted heterogeneous metal cations.  相似文献   

12.
Four new potentially polytopic nitrogen donor ligands based on the 1,3,5-triazine fragment, L(1)-L(4) (L(1) = 2-chloro-4,6-di(1H-pyrazol-1-yl)-1,3,5-triazine, L(2) = N,N'-bis(4,6-di(1H-pyrazol-1-yl)-1,3,5-triazin-2-yl)ethane-1,2-diamine, L(3) = 2,4,6-tris(tri(1H-pyrazol-1-yl)methyl)-1,3,5-triazine, and L(4) = 2,4,6-tris(2,2,2-tri(1H-pyrazol-1-yl)ethoxy)-1,3,5-triazine) have been synthesized and characterized. The X-ray crystal structure of L(3) confirms that its molecular nature consists of a 1,3,5-triazine ring bearing three tripodal tris(pyrazolyl) arms. L(1), L(2), and L(4) react with Cu(I), Cu(II), Pd(II) and Ag(I) salts yielding mono-, di-, and oligonuclear derivatives: [Cu(L(1))(Cy(3)P)]ClO(4), [{Ag(2)(L(2))}(CF(3)SO(3))(2)]·H(2)O, [Cu(2)(L(2))(NO(3))(2)](NO(3))(2)·H(2)O, [Cu(2)(L(2))(CH(3)COO)(2)](CH(3)COO)(2)·3H(2)O, [Pd(2)(L(2))(Cl)(4)]·2H(2)O, [Ru(L(2))(Cl)(OH)]·CH(3)OH, [Ag(3)(L(4))(2)](CF(3)SO(3))(3) and [Ag(3)(L(4))(2)](BF(4))(3). The interaction of L(3) with Ag(I), Cu(II), Zn(II) and Ru(II) complexes unexpectedly produced the hydrolysis of the ligand with formation, in all cases, of tris(pyrazolyl)methane (TPM) derivatives. In detail, the already known [Ag(TPM)(2)](CF(3)SO(3)) and [Cu(TPM)(2)](NO(3))(2), as well as the new [Zn(TPM)(2)](CF(3)SO(3))(2) and [Ru(TMP)(p-cymene)]Cl(OH)·2H(2)O complexes have been isolated. Single-crystal XRD determinations on the latter derivatives confirm their formulation, evidencing, for the Ru(II) complex, an interesting supramolecular arrangement of the anions and crystallization water molecules.  相似文献   

13.
The treatment of Fe(ClO(4))(2)·6H(2)O or Fe(ClO(4))(3)·9H(2)O with a benzimidazolyl-rich ligand, N,N,N',N'-tetrakis[(1-methyl-2-benzimidazolyl)methyl]-1,2-ethanediamine (medtb) in alcohol/MeCN gives a mononuclear ferrous complex, [Fe(II)(medtb)](ClO(4))(2)·?CH(3)CN·?CH(3)OH (1), and four non-heme alkoxide-iron(III) complexes, [Fe(III)(OMe)(medtb)](ClO(4))(2)·H(2)O (2, alcohol = MeOH), [Fe(III)(OEt)(Hmedtb)](ClO(4))(3)·CH(3)CN (3, alcohol = EtOH), [Fe(III)(O(n)Pr)(Hmedtb)](ClO(4))(3)·(n)PrOH·2CH(3)CN (4, alcohol = n-PrOH), and [Fe(III)(O(n)Bu)(Hmedtb)](ClO(4))(3)·3CH(3)CN·H(2)O (5, alcohol = n-BuOH), respectively. The alkoxide-iron(III) complexes all show 1) a Fe(III)-OR center (R = Me, 2; Et, 3; (n)Pr, 4; (n)Bu, 5) with the Fe-O bond distances in the range of 1.781-1.816 ?, and 2) a yellow color and an intense electronic transition around 370 nm. The alkoxide-iron(III) complexes can be reduced by organic compounds with a cis,cis-1,4-diene moiety via the hydrogen atom abstraction reaction.  相似文献   

14.
Reactions of the diphosphine 1,3-C6H4(CH2PH2)2 and fluorous alkenes H2C=CHR(fn)(R(fn)=(CF2)(n-1)CF3; n = 6, 8) at 75 degrees C in the presence of AIBN give the title ligands 1,3-C6H4(CH2P(CH2CH2R(fn))2)2(3-R(fn)) and byproducts 1,3-C6H4(CH3)(CH2P(CH2CH2R(fn))2)(4-R(fn)) in 1 : 3 to 1 : 5 ratios. Workups give -R(fn) in 4--17% yields. Similar results are obtained photochemically. Reaction of 1,3-C6H4(CH2Br)2 and HP(CH2CH2R(f8))2 (5) at 80 degrees C (neat, 1 : 2 mol ratio) gives instead of simple substitution the metacyclophane [1,3-C6H4(CH2P(CH2CH2R(f8))2 CH2-1,3-C(6)H(4)CH(2)P[lower bond 1 end](CH2CH2R(f8))2C[upper bond 1 end]H2](2+)2Br-, which upon treatment with LiAlH(4) yields 3-R(f8)(20%), 4-R(f8), and other products. Efforts to better access 3-R(f8), either by altering stoichiometry or using various combinations of the phosphine borane (H3B)PH(CH2CH2R(f8))2 and base, are unsuccessful. Reactions of 3-R(fn) with Pd(O2CCF3)2 and [IrCl(COE)2]2(COE=cyclooctene) give the palladium and iridium pincer complexes (2,6,1-C6H3(CH2 P(CH2CH2R(fn))(2)(2)Pd(O2CCF3)(10-R(fn); 80-90%) and (2,6,1-C6H3(CH2P(CH2CH2R(f8))2)2)Ir(Cl)(H)(11-R(f8); 29%), which exhibit CF3C6F(11)/toluene partition coefficients of >96 : <4. The crystal structure of 10-R(f8) shows CH2CH2R(f8) groups with all-anti conformations that extend in parallel above and below the palladium square plane to create fluorous lattice domains. NMR monitoring shows a precursor to 11-R(f8) that is believed to be a COE adduct.  相似文献   

15.
Two new compounds constructed from tetra-Ni-substituted sandwich-type polyoxometalates functionalized by organic groups, (NH(4))(2)[Ni(4)(enMe)(8)(H(2)O)(2)Ni(4)(enMe)(2)(PW(9)O(34))(2)].9H(2)O (enMe = 1,2-diaminopropane) (1) and Na(2)[H(6)N(2)(CH(2))(6)](2){Ni(4)[H(4)N(2)(CH(2))(6)](2)(H(2)PW(9)O(34))(2)}.7H(2)O (2), have been successfully synthesized under hydrothermal conditions. Single-crystal X-ray diffraction analysis is carried out on these two compounds (1 and 2), which both crystallize in the triclinic system. Compound 1 represents the first example of a 2D layer structure consisting of the sandwich-type polyoxoanions with six supporting [Ni(enMe)(2)](2+) moities and two organic functionalized groups. Compound 2 exhibits a 1D chain-like structure based on sandwich-type polyoxoanions and sodium cations, which are further connected into a 2D layer structure via hydrogen-bonding interactions between the 1,6-hexanediamine molecules and the sandwich-type [Ni(4)(H(4)N(2)(CH(2))(6))(2)(H(2)PW(9)O(34))(2)](6-) polyoxoanions. A magnetic study of the two compounds indicates that intramolecular ferromagnetic Ni-Ni interactions exist in the tetranuclear metal cluster.  相似文献   

16.
First generation fluorous DEAD reagent bis(perfluorohexylethyl)azo dicarboxylate (C(6)F(13)(CH(2))(2)O(2)CN=NCO(2)(CH(2))(2)C(6)F(13), F-DEAD-1) has been shown to underperform relative to diisopropylazodicarboxylate in difficult Mitsunobu reactions involving hindered alcohols or less acidic pronucleophiles (phenols). Two new second generation fluorous reagents bearing propylene spacers instead of the ethylene spacers show expanded reaction scope while retaining the easy fluorous separation features. Byproducts from "half fluorous" reagent perfluorooctylpropyl tert-butyl azo dicarboxylate (C(8)F(17)(CH(2))(3)O(2)CN=NCO2(t)Bu, F-DEAD-2) can be removed by fluorous flash chromatography, and byproducts from bis(perfluorohexylpropyl)azo dicarboxylate (C(6)F(13)(CH(2))(3)O(2)CN=NCO(2)(CH(2))(3)C(6)F(13), F-DEAD-3) can be removed by fluorous solid-phase extraction. The new reagents promise to provide general and complementary solutions for separation problems in Mitsunobu reactions without restricting reaction scope.  相似文献   

17.
The electrochemical behavior of the ball-shaped heteropolytungstates [[Sn(CH(3))(2)(H(2)O)](24)[Sn(CH(3))(2)](12)(A-XW(9)O(34))(12)](36-) (X=P, 1; As, 2) was examined in aqueous electrolytes by redissolution of their respective mixed cesium-sodium salts Cs(14)Na(22)[[Sn(CH(3))(2)(H(2)O)](24)[Sn(CH(3))(2)](12) (A-PW(9)O(34))(12)]149 H(2)O (Cs(14)-1) and Cs(14)Na(22)[[Sn(CH(3))(2)(H(2)O)](24)[Sn(CH(3))(2)](12)(A-AsW(9)O(34))(12)]149 H(2)O (Cs(14)-2). In the studied media, Cs(14)-2 is readily soluble in contrast to the significantly less soluble Cs(14)-1. The solubility of Cs(14)-1 is increased by the presence of Li(+) ions in solution. Gel filtration studies with 1 and 2 rule out a decay of the dodecameric spherical assemblies to Keggin-based monomers on the timescale of the experiment. By UV/Vis spectroscopy and cyclic voltammetry, 2 was found to be significantly less stable than 1 and both polyanions also show rather different decomposition pathways. Polyanion 1 collapses first into Keggin-type monomers which might contain the trilacunary [A-alpha-PW(9)O(34)](9-). The final monomeric species obtained from 1 appears to be very similar to [PW(11)O(39)](7-), which is the final transformation product of [A-alpha-PW(9)O(34)](9-) in the same media. In contrast, 2 does not seem to follow an analogous transformation pathway as that of the trilacunary [A-alpha-AsW(9)O(34)](9-). Importantly, stabilization of 1 is observed in chloride media. The fairly long-term stability of 1 in 1 M LiCl, pH 3, has allowed for its electrochemical study to be carried out. The solid-state cyclic voltammogram of 1 entrapped in a carbon paste electrode shows the same characteristics as 1 dissolved in chloride solutions, thus supporting the conclusion that the polyanion is stable in these environments. Controlled potential coulometry on 1 indicates that the number of electrons consumed in the first wave is larger than twenty. To our knowledge, 1 constitutes the first example of a molecule that can take up such a large number of electrons resulting in a chemically reversible W-wave. These properties show promise for future fundamental and applied studies. Polyanion 1 is also efficient in the electrocatalytic reduction of NO(x), including nitrate. Finally, a remarkable interaction was found between 1 and NO, a highly promising feature for biomimetic applications.  相似文献   

18.
The structure and electrochemical properties of a series of bis(imino)pyridine Co(II) complexes (NNN)CoX(2) and [(NNN)(2)Co][PF(6)](2) (NNN = 2,6-bis[1-(4-R-phenylimino)ethyl]pyridine, with R = CN, CF(3), H, CH(3), OCH(3), N(CH(3))(2); NNN = 2,6-bis[1-(2,6-(iPr)(2)-phenylimino)ethyl]pyridine and X = Cl, Br) were studied using a combination of electrochemical and theoretical methods. Cyclic voltammetry measurements and DFT/B3LYP calculations suggest that in solution (NNN)CoCl(2) complexes exist in equilibrium with disproportionation products [(NNN)(2)Co](2+) [CoCl(4)](2-) with the position of the equilibrium heavily influenced by both the solvent polarity and the steric and electronic properties of the bis(imino)pyridine ligands. In strong polar solvents (e.g., CH(3)CN or H(2)O) or with electron donating substituents (R = OCH(3) or N(CH(3))(2)) the equilibrium is shifted and only oxidation of the charged products [(NNN)(2)Co](2+) and [CoCl(4)](2-) is observed. Conversely, in nonpolar organic solvents such as CH(2)Cl(2) or with electron withdrawing substituents (R = CN or CF(3)), disproportionation is suppressed and oxidation of the (NNN)CoCl(2) complexes leads to 18e(-) Co(III) complexes stabilized by coordination of a solvent moiety. In addition, the [(NNN)(2)Co][PF(6)](2) complexes exhibit reversible Co(II/III) oxidation potentials that are strongly dependent on the electron withdrawing/donating nature of the N-aryl substituents, spanning nearly 750 mV in acetonitrile. The resulting insight on the regulation of redox properties of a series of bis(imino)pyridine cobalt(II) complexes should be particularly valuable to tune suitable conditions for reactivity.  相似文献   

19.
Metal complexation studies were performed with the ditopic pyrimidine-hydrazone (pym-hyz) strand 6-hydroxymethylpyridine-2-carboxaldehyde (2-methyl-pyrimidine-4,6-diyl)bis(1-methylhydrazone) (1) and Pb(ClO(4))(2)·3H(2)O, Pb(SO(3)CF(3))(2)·H(2)O, Zn(SO(3)CF(3))(2), and Zn(BF(4))(2) to examine the ability of 1 to form various supramolecular architectures. X-ray crystallographic and NMR studies showed that coordination of the Pb(II) salts with 1 on a 2:1 metal/ligand ratio in CH(3)CN and CH(3)NO(2) resulted in the linear complexes [Pb(2)1(ClO(4))(4)] (2), [Pb(2)1(ClO(4))(3)(H(2)O)]ClO(4) (3), and [Pb(2)1(SO(3)CF(3))(3)(H(2)O)]SO(3)CF(3) (4). Two unusually distorted [2 × 2] grid complexes, [Pb1(ClO(4))](4)(ClO(4))(4) (5) and [Pb1(ClO(4))](4)(ClO(4))(4)·4CH(3)NO(2) (6), were formed by reacting Pb(ClO(4))(2)·6H(2)O and 1 on a 1:1 metal/ligand ratio in CH(3)CN and CH(3)NO(2). These grids formed despite coordination of the hydroxymethyl arms due to the large, flexible coordination sphere of the Pb(II) ions. A [2 × 2] grid complex was formed in solution by reacting Pb(SO(3)CF(3))(2)·H(2)O and 1 on a 1:1 metal/ligand ratio in CH(3)CN as shown by (1)H NMR, microanalysis, and ESMS. Reacting the Zn(II) salts with 1 on a 2:1 metal/ligand ratio gave the linear complexes [Zn(2)1(H(2)O)(4)](SO(3)CF(3))(4)·C(2)H(5)O (7) and [Zn(2)1(BF(4))(H(2)O)(2)(CH(3)CN)](BF(4))(3)·H(2)O (8). (1)H NMR studies showed the Zn(II) and Pb(II) ions in these linear complexes were labile undergoing metal ion exchange. All of the complexes exhibited pym-hyz linkages in their cisoid conformation and binding between the hydroxymethyl arms and the metal ions. No complexes were isolated from reacting either of the Zn(II) salts with 1 on a 1:1 metal/ligand ratio, due to the smaller size of the Zn(II) coordination sphere as compared to the much larger Pb(II) ions.  相似文献   

20.
Halogenated carbaborane ions [CB(11)H(6)X(6)](-) in which X=Cl or Br have been combined with the host molecule cyclotriveratrylene (CTV) and Group 1 metal cations to give crystalline materials. The complexes [Na(ctv)(H(2)O)(CB(11)H(6)X(6))](CF(3)CH(2)OH) feature chiral Na-CTV coordination chains with complexation of the [CB(11)H(6)X(6)](-) ion by the Na(+) ion, together with the CTV molecular cavity. The coordination chains are hydrogen bonded together to give a puckered two-dimensional hexagonal grid structure. [K(ctv)(CB(11)H(6)Cl(6))(CF(3)CH(2)OH)(0.5)] is essentially isostructural. Complexes [Rb(ctv)(CB(11)H(6)Br(6))(H(2)O)] and [Cs(ctv)(CB(11)H(6)X(6))(CH(3)CN)] are coordination polymers with related distorted hexagonal grid structures. Use of N,N'-dimethylformamide (DMF) as a solvent results in an entirely different type of assembly, with [Na(2)(dmf)(4)(H(2)O)(2)(ctv)][(dmf)(0.5)(ctv)][CB(11)H(6)Br(6)](2) showing unusual [Na-mu-(dmf)-Na] bridges, and once again forming a distorted hexagonal coordination polymer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号