首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Orthorhombic PbCO3, known as natural crystal cerussite, is presented as a new Stimulated Raman Scattering (SRS)‐active crystal. With picosecond laser pumping high‐order Raman‐induced χ(3) generation is observed. All registered Stokes and anti‐Stokes sidebands in the visible and near‐IR are identified and attributed to the SRS‐promoting phonon mode A1g of the carbonate group, with ωSRS ≈ 1054 cm−1. The first Stokes steady‐state Raman gain coefficient in the visible spectral range is estimated as well to a value not less than 4.6 cm·GW−1.  相似文献   

2.
Lead carbonate chloride, Pb2CO3Cl2, known as mineral phosgenite, is introduced as a novel SRS‐active carbonate crystal with tetragonal symmetry. Under picosecond one‐micron laser pumping Raman‐induced χ(3)‐nonlinear generation in the near‐IR is observed. All recorded high‐order Stokes and anti‐Stokes sidebands are identified and attributed to two SRS‐promoting vibration modes with ωSRS1 ≈ 1062 cm–1 and ωSRS2 ≈ 86 cm–1.

  相似文献   


3.
In single crystals of the beryllium silicate Be2SiO4 with trigonal symmetry , known also as the mineral phenakite, χ(3)‐nonlinear lasing by stimulated Raman scattering (SRS) is investigated. All observed Stokes and anti‐Stokes lasing components are identified and ascribed to a single SRS‐promoting vibration mode with ωSRS ≈876 cm−1. With picosecond single‐wavelength pumping at one micrometer the generation of an octave‐spanning Stokes and anti‐Stokes comb is observed.  相似文献   

4.
For calcite (CaCO3), one of the pioneer crystals in nonlinear optics, new results of stimulated Raman scattering (SRS) spectroscopy are presented. Among them are the discovery of a new SRS‐promoting vibration mode with ωSRS2 ≈︁ 282 cm‐1 and its participation, together with the main SRS mode ωSRS1 ≈︁ 1086.5 cm‐1, in cross‐cascaded (χ(3) ↔ χ(3)) nonlinear‐lasing generation, as well as the observation of efficient self‐upconversion via cascaded parametric four‐wave processes of one‐micron Stokes and anti‐Stokes χ(3)‐lasing into the UV‐region of third harmonic generation. The investigations show that calcite is able to generate a χ(3)‐lasing comb of more than two octaves bandwidth. The article also gives a brief review on the discovery and study of the SRS‐effect in natural crystals (minerals), which have expanded our ability to study the photon‐phonon nonlinear‐laser interactions in crystalline materials. A short summary of information about χ(3)‐lasing properties of the triangular planar structure units in SRS‐active crystals is included.  相似文献   

5.
Stimulated Raman scattering (SRS) has been observed for the first time in a tetragonal LiYbF4 crystal. The recorded Stokes and anti-Stokes components of χ(3) nonlinear lasing are attributed to the two SRS-active phonon modes with ωSRS1 ~ 325 cm–1 and ωSRS2 ~ 432 cm–1 of this crystal.  相似文献   

6.
The components of the third‐order nonlinear optical susceptibility χ(3) for the 1002‐cm–1 mode of neat benzenethiol have been measured using coherent anti‐Stokes Raman scattering with continuous‐wave diode pump and Stokes lasers at 785.0 and 852.0 nm, respectively. Values of 2.8 ± 0.3 × 10–12, 2.0 ± 0.2 × 10–12, and 0.8 ± 0.1 × 10–12 cm·g–1·s2 were measured for the xxxx, xxyy, and xyyx components of |3χ(3)|, respectively. We have calculated these quantities using a microscopic model, reproducing the same qualitative trend. The Raman cross‐section σRS for the 1002‐cm–1 mode of neat benzenethiol has been determined to be 3.1 ± 0.6 × 10–29 cm2 per molecule. The polarization of the anti‐Stokes Raman scattering was found to be parallel to that of the pump laser, which implies negligible depolarization. The Raman linewidth (full‐width at half‐maximum) Γ was determined to be 2.4 ± 0.3 cm–1 using normal Stokes Raman scattering. The measured values of σRS and Γ yield a value of 2.1 ± 0.4 × 10–12 cm·g–1·s2 for the resonant component of 3χ(3). A value of 1.9 ± 0.9 × 10–12 cm·g–1·s2 has been deduced for the nonresonant component of 3χ(3). Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
The discovery of stimulated Raman scattering (SRS) in monoclinic fluoride β-BaYb2F8 known as a host matrix for Ln3+ lasant ions was reported. All the recorded spectral components of Stokes and anti-Stokes χ(3)-nonlinear picosecond generation were assigned to the three SRS-active photon Ag- and Bg-modes of a crystal (ωSRS1 ~ 362 cm–1, ωSRS2 ~ 295 cm–1, and ωSRS3 ~ 230 cm–1).  相似文献   

8.
We demonstrated the growth profile of stimulated Raman anti‐Stokes scattering (SRS) of carbon disulfide (CS2) influenced by fluorescence seeding of all‐trans‐β‐carotene and rhodamine‐B (RhB) in liquid‐core optical fiber (LCOF). The pump energy which was needed to build up the first‐order anti‐Stokes radiation of CS2 solutions with the fluorescence seeding was lower than that of CS2 solutions without fluorescence seeding because of the fluorescence enhancement effect on the intensity of the first‐order Stokes radiation. The first‐order anti‐Stokes radiation of the RhB solution (10−8 M ) was built up at a lower pump energy than that of the all‐trans‐β‐carotene solution (10−6 M ), and the intensity of the first‐order anti‐Stokes radiation of the RhB solution was higher than that of the all‐trans‐β‐carotene solution. Simultaneously, the coupled wave differential equations were obtained by the theoretical derivation, and the growth profile of the first‐order anti‐Stokes radiation was theoretically calculated with and without the fluorescence seeding by these equations. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
The non‐centrosymmetric polar tetragonal (P 41) barium antimony tartrate trihydrate, Ba[Sb2((+)C4H2O6)2]·3H2O, was found to be an attractive novel semi‐organic crystal manifesting numerous χ (2)‐ and χ (3)‐nonlinear optical interactions. In particular, with picosecond single‐ and dual‐wavelength pumping SHG and THG via cascaded parametric four‐wave processes were observed. High‐order Stokes and anti‐Stokes lasing related to two SRS‐promoting vibration modes of the crystal, with ωSRS1 ≈ 575 cm?1 and ωSRS2 ≈ 2940 cm?1, takes place. Basing on a spontaneous Raman investigation an assignment of the two SRS‐active vibration modes is discussed.

  相似文献   


10.
Hexagonal Ca5(PO4)3F, known as natural crystal fluorapatite and oldest host‐crystal for Ln3+‐lasant ions, is presented as a Raman‐active material. High‐order Raman‐induced χ(3)‐nonlinear processes are discovered in natural crystals of fluorapatite under picosecond pumping at 1.064 μm and 0.532 μm wavelength. A multitude of Stokes and anti‐Stokes components is generated in the ultraviolet, visible and near‐infrared spectral region by stimulated Raman scattering (SRS) and Raman four‐wave mixing (FWHM), resulting in a frequency comb with a width of 520 THz. The spectral lines are identified and attributed to the ν1(Ag) vibration mode of the tetrahedral [PO4] units which is related to a Raman shift of ωSRS ≈ 965 cm−1. The first Stokes steady‐state Raman gain coefficient in the near‐infrared spectral range is estimated to be >0.38 cm·GW−1. Finally, a short review of SRS‐promoting vibration modes and observed χ(3)‐ nonlinear interactions in all known SRS‐active natural crystals (minerals) is given.

  相似文献   


11.
Results of measurements made at the SIRIUS beamline of the SOLEIL synchrotron for a new X‐ray beam position monitor based on a super‐thin single crystal of diamond grown by chemical vapor deposition (CVD) are presented. This detector is a quadrant electrode design processed on a 3 µm‐thick membrane obtained by argon–oxygen plasma etching the central area of a CVD‐grown diamond plate of 60 µm thickness. The membrane transmits more than 50% of the incident 1.3 keV energy X‐ray beam. The diamond plate was of moderate purity (~1 p.p.m. nitrogen), but the X‐ray beam induced current (XBIC) measurements nevertheless showed a photo‐charge collection efficiency approaching 100% for an electric field of 2 V µm?1, corresponding to an applied bias voltage of only 6 V. XBIC mapping of the membrane showed an inhomogeneity of more than 10% across the membrane, corresponding to the measured variation in the thickness of the diamond plate before the plasma etching process. The measured XBIC signal‐to‐dark‐current ratio of the device was greater than 105, and the X‐ray beam position resolution of the device was better than a micrometer for a 1 kHz sampling rate.  相似文献   

12.
The carbon‐rich silicon carbide (C‐rich SixC1?x) micro‐ring channel waveguide with asymmetric core aspect is demonstrated for all‐optical cross‐wavelength pulsed return‐to‐zero on‐off keying (PRZ‐OOK) data conversion. Enhanced nonlinear optical Kerr switching enables 12‐Gbit per second data processing with optimized modulation depth. The inverse tapered waveguide at end‐face further enlarges the edge‐coupling efficiency, and the asymmetric channel waveguide distinguishes the polarization modes. To prevent data shape distortion, the bus/ring gap spacing is adjusted to control the quality factor (Q‐factor) of the micro‐ring. Designing the waveguide cross section at 500 × 350 nm2 provides the C‐rich SixC1?x channel waveguide to induce strong transverse electric mode (TE‐mode) confinement with a large Kerr nonlinearity of 2.44 × 10?12 cm2 W?1. Owing to the trade‐off between the Q‐factor and the on/off extinction ratio, the optimized bus/ring gap spacing of 1400 nm is selected to provide a coupling ratio at 5–6% for compromising the modulation depth and the switching throughput. Such a C‐rich SixC1?x micro‐ring with asymmetric channel waveguide greatly enhances the cross‐wavelength data conversion efficiency to favor its on‐chip all‐optical data processing applications for future optoelectronic interconnect circuits.  相似文献   

13.
We present continuous wave stimulated Raman scattering (SRS) of benzene (C6H6) influenced by the fluorescent dye m‐cresol purple in a hollow fused silica fiber (HFSF). Because of the transmission loss of the HFSF filled with C6H6, the SRS occurs when the Stokes gain equals the transmission loss, with the loss taken at the Stokes wavelength. The 992 cm−1 stimulated Stokes line has been obtained at the pump wavelength 658 nm, which cannot be obtained at 532 nm because the Stokes wavelength (562 nm) does not locate in the transmission loss. Also, the pump power is 35 mW with m‐cresol purple which is much lower than 800 mW without the dye. The profile of the 992 cm−1 stimulated Stokes is changed, and the weak shoulders of the profile are amplified by fluorescence. These results are expected to be of relevance in applications on the tunable Raman laser at new wavelengths. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
We report the experimental investigations of nonlinear-laser effects in vanadate YbVO4 under a onemicron picosecond Nd3+:Y3Al5O12 laser pumping. In this tetragonal host-crystal for Ln3+ lasants, for the first time, we excited more than one-and-a-half octave (≈11661 cm?1) Raman-induced Stokes and anti-Stokes generation combs and observed a multistep cascaded parametric χ(3) lasing in the deep-blue spectral region. All generation lines were identified and attributed to the SRS-promoting vibration mode of the crystal (ωSRS ≈ 897 cm?1). We classified the ytterbium vanadate as a promising material for Raman frequency converters, wideband χ(3)-nonlinear comb generators, and as a gain medium for solid-state lasers.  相似文献   

15.
Monoclinic m‐LaVO4 vanadate with the monazite‐type structure was found to be a new favorable SRS‐active crystal. Its two‐phonon impulsive Stokes lasing has been recorded under near‐IR femtosecond pumping. Knowledge acquired about the behavior of impulsive stimulated Raman scattering in the studied crystals may be useful for the physics of coherent optical phonons and for engineering of femtosecond lasers. The fundamental results obtained here will also motivate the search for crystals able to generate multiphonon impulsive SRS. (© 2015 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

16.
The capability of anti‐Stokes/Stokes Raman spectroscopy to evaluate chemical interactions at the interface of a conducting polymer/carbon nanotubes is demonstrated. Electrochemical polymerisation of the monomer 3,4‐ethylenedioxythiophene (EDOT) on a Au support covered with a single‐walled carbon nanotube (SWNT) film immersed in a LiClO4/CH3CN solution was carried out. At the resonant optical excitation, which occurs when the energy of the exciting light coincides with the energy of an electronic transition, poly(3,4‐ethylenedioxythiophene) (PEDOT) deposited electrochemically as a thin film of nanometric thickness on a rough Au support presents an abnormally intense anti‐Stokes Raman spectrum. The additional increase in Raman intensity in the anti‐Stokes branch observed when PEDOT is deposited on SWNTs is interpreted as resulting from the excitation of plasmons in the metallic nanotubes. A covalent functionalisation of SWNTs with PEDOT both in un‐doped and doped states takes place when the electropolymerisation of EDOT, with stopping at +1.6 V versus Ag/Ag+, is performed on a SWNT film deposited on a Au plate. The presence of PEDOT covalently functionalised SWNTs is rationalised by (1) a downshift by a few wavenumbers of the polymer Raman line associated with the symmetric C C stretching mode and (2) an upshift of the radial breathing modes of SWNTs, both variations revealing an interaction between SWNTs and the conjugated polymer. Raman studies performed at different excitation wavelengths indicate that the resonant optical excitation is the key condition to observe the abnormal anti‐Stokes Raman effect. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
Coherent anti‐Stokes Raman scattering (CARS) spectroscopy of gas‐phase CO2 is demonstrated using a single femtosecond (fs) laser beam. A shaped ultrashort laser pulse with a transform‐limited temporal width of ∼7 fs and spectral bandwidth of ∼225 nm (∼3500 cm−1) is employed for simultaneous excitation of the CO2 Fermi dyads at ∼1285 and ∼1388 cm−1. CARS signal intensities for the two Raman transitions and their ratio as a function of pressure are presented. The signal‐to‐noise ratio of the single beam–generated CO2 CARS signal is sufficient to perform concentration measurements at a rate of 1 kHz. The implications of these experiments for measuring CO2 concentrations and rapid pressure fluctuations in hypersonic and detonation‐based chemically reacting flows are also discussed. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
We report the experimental investigations of nonlinear-laser effects in LuVO4 vanadate under one-micron picosecond Nd3+:Y3Al5O12 pumping. In this tetragonal host-crystal for Ln3+ lasants for the first time we excited ultra-broad, more than one and half octave (13500 cm−1) Raman induced Stokes and anti-Stokes generation combs and observed multi-step cascaded parametric χ (3)-lasing in UV spectral region. All generation lines were identified and attributed to SRS-promoting modes of the crystal (ω SRS1≈900 cm−1 and ω SRS2≈113 cm−1). We classified this vanadate as a promising material for self-Raman laser converters.  相似文献   

19.
We present a simple analytical model to describe the stimulated Raman Stokes scattering (SRS) linear polarization spectroscopy of fluorescent dye solutions in liquid‐core optical fibers (LCOFs). In this scheme, the linear polarization direction of the pump pulse is set parallel to the y‐axis through a straight polarization‐maintaining LCOF, in which the energy of the total optical field is kept invariant, and different fluorescence dyes are used to generate different first‐order Stokes intensities. We demonstrate the SRS of all‐trans‐β‐carotene and fluorescein in carbon disulfide (CS2) solutions due to the optical field‐induced reorientation effect, which makes the first‐order Stokes polarization direction rotate by an angle of 88° or 61°, respectively. This demonstrates the good agreement between the theory presented and the experiment. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
Spin‐coated zirconium oxide films were used as a gate dielectric for low‐voltage, high performance indium zinc oxide (IZO) thin‐film transistors (TFTs). The ZrO2 films annealed at 400 °C showed a low gate leakage current density of 2 × 10–8 A/cm2 at an electric field of 2 MV/cm. This was attributed to the low impurity content and high crystalline quality. Therefore, the IZO TFTs with a soluble ZrO2 gate insulator exhibited a high field effect mobility of 23.4 cm2/V s, excellent subthreshold gate swing of 70 mV/decade and a reasonable Ion/off ratio of ~106. These TFTs operated at low voltages (~3.0 V) and showed high drain current drive capability, enabling oxide TFTs with a soluble processed high‐k dielectric for use in backplane electronics for low‐power mobile display applications. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号