首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Hydrogen effusion results are discussed for hydrogenated amorphous silicon (a-Si:H) and related alloys as well as for crystalline silicon (c-Si). It is demonstrated that depending on the microstructure of the material, hydrogen effusion gives information on hydrogen diffusion or surface desorption. The results suggest for compact a-Si:H and for ion implanted c-Si a similar hydrogen diffusion process, which is a trap limited motion of atomic hydrogen. Hydrogen effusion from defect-free c-Si and from void-rich amorphous semiconductors is limited by surface desorption. Both hydrogen diffusion and desorption depend on the Fermi energy if hydrogen bonds to the host material are broken.  相似文献   

2.
The paper reports the diffusion coefficients of grain boundary diffusion and grain boundary assisted lattice diffusion of Pd in Mg in Pd/Mg/Si system, a useful material for hydrogen storage, at 473 K in vacuum. The grain boundary diffusivity is measured by Whipple model and grain boundary assisted lattice diffusivity by plateau rise method using Pd depth profiles constructed by Rutherford backscattering spectrometry. It is established that grain boundary diffusivities are about six orders of magnitude faster than lattice diffusivities. Fine grained microstructure of Pd film, high abundance of defects in Mg film and higher stability associated with Pd-Mg intermetallics are responsible for the diffusion of Pd into grain boundaries and subsequently in the interiors of Mg. Besides the indiffusion of Pd, annealing also brings about an outdiffusion of Mg into Pd film. Examination by nuclear reaction analysis involving 24Mg(p,p′γ)24Mg resonance reaction shows the occurrence of Mg outdiffusion. Minimization of surface energy is presumably the driving force of the process. In addition to Pd/Mg interface, diffusion occurs across Mg/Si (substrate) interface as well on increasing the annealing temperature above 473 K. These studies show that dehydrogenation of films accomplished by vacuum annealing should be limited to temperatures less than 473 K to minimize the loss of surface Pd, the catalyst of the hydrogen absorption-desorption process and Mg, the hydrogen storing element, by way of interfacial reactions.  相似文献   

3.
Microstructure and related properties of hydrogenated silicon samples, Si:H, treated at high-temperature (HT) up to 1270 K under hydrostatic argon pressure (HP) up to 1.1 GPa are investigated. To prepare Si:H, Czochralski grown 0 0 1 oriented single crystalline Si wafer with 50 nm thick surface SiO2 layer was heavily implanted with hydrogen using the immersion plasma source of hydrogen ions with energy 24 keV.The surface of HT-HP treated Si:H was characterised by scanning electron microscopy. Reflectivity pattern measurements in the wavelength range of 350-2000 nm have been performed to analyse their surface and bulk properties. The volume averaging method for a model of layer-like structure has been used to simulate the HT-HP treated Si:H. The analysis of Si:H samples suggests the multi-layer structure composed of Si, Si:H, SiO, SiO2, and of porous Si layers in the sub-surface region. The porous Si:H samples model is in good consistency with experimental data from reflectance measurements.  相似文献   

4.
This work demonstrates that the combination of a wet‐chemically grown SiO2 tunnel oxide with a highly‐doped microcrystalline silicon carbide layer grown by hot‐wire chemical vapor deposition yields an excellent surface passivation for phosphorous‐doped crystalline silicon (c‐Si) wafers. We find effective minority carrier lifetimes of well above 6 ms by introducing this stack. We investigated its c‐Si surface passivation mechanism in a systematic study combined with the comparison to a phosphorous‐doped polycrystalline‐Si (pc‐Si)/SiO2 stack. In both cases, field effect passivation by the n‐doping of either the µc‐SiC:H or the pc‐Si is effective. Hydrogen passivation during µc‐SiC:H growth plays an important role for the µc‐SiC:H/SiO2 combination, whereas phosphorous in‐diffusion into the SiO2 and the c‐Si is operative for the surface passivation via the Pc‐Si/SiO2 stack. The high transparency and conductivity of the µc‐SiC:H layer, a low thermal budget and number of processes needed to form the stack, and the excellent c‐Si surface passivation quality are advantageous features of µc‐SiC:H/SiO2 that can be beneficial for c‐Si solar cells. (© 2016 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

5.
Laser technology for submicron-doped layers formation in semiconductors   总被引:5,自引:0,他引:5  
A p–n junctions formed by means of laser stimulated diffusion of dopants into semiconductors (Si, GaAs, GaP, InP) were investigated. SIMS and AES spectroscopy methods were used to measure the depth profiles of the incorporated impurities: B into Si, Zn into GaAs, GaP and InP. The volt-capacity method using an electrochemical profilometer was used for the charge carrier concentration distribution in the doped layer. Spectroscopy investigations have shown that during solid phase diffusion locally doped regions almost exactly reproduce the shape and size of the windows in the dielectrics. The lateral diffusion of the dopant is about 0.01μm. The concentration profiles of charge carrier distribution in the doped layers clearly show the specific processes of dopant diffusion and evaporation at laser solid-phase doping of semiconductors. The comparative analysis of parameters of formed semiconductor structures shows that the procedure of laser solid-phase doping can stand the comparison with technology of implantation and conventional diffusion technology. Since the laser solid-phase doping ensures also a high degree of reproducibility of p–n junction parameters, it can be effectively used for electronic devices fabrication.  相似文献   

6.
Raman spectroscopy was applied on a depth profile of porcine adipose tissue (from skin to meat) with the purpose of (1) discriminating between fat layers and (2) estimating the variation in fatty acid composition as a function of fat depth and fat layer: total degree of unsaturation (iodine value), fractions of saturated, and monounsaturated and polyunsaturated fatty acids. The thickness and composition of the outer layer of porcine adipose tissue influences the final quality of backfat. A too‐thick outer layer is associated with problems such as oily appearance, rancidity development, and difficulties in separating muscle and adipose tissue when cutting. From principal component analysis on standard normal variate preprocessed Raman spectra (1800–800 cm–1), it was possible to discriminate between the outer and the inner backfat layer. Principal component analysis loadings showed that the separation of layer was mainly explained by variation in the bands originating from vibration of double bond C = C stretching plus = C–H twisting and rocking. In the prediction of iodine value a three‐component partial least squares regression model based on full range Raman spectra showed a root mean square error of cross validation of 2.00 and R2 = 0.69. Applying Cauchy–Lorentz band fitting proved that information regarding fat unsaturation was found not only in band intensity, but also in band parameters such as location and width. The results suggest Raman spectroscopy as a potential measurement technique for rapid grading of pork carcasses. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
The low thermal stability of hydrogenated amorphous silicon (a‐Si:H) thin films limits their widespread use for surface passivation of c‐Si wafers on the rear side of solar cells. We show that the thermal stability of a‐Si:H surface passivation is increased significantly by a hydrogen rich a‐Si:H bulk, which acts as a hydrogen reservoir for the a‐Si:H/c‐Si interface. Based on this mechanism, an excellent lifetime of 5.1 ms (at injection level of 1015 cm–3) is achieved after annealing at 450 °C for 10 min. (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
Hydrogenated amorphous silicon (a‐Si:H) films were studied using infrared and Raman spectroscopy. We have experimentally found that ratios of Raman scattering cross‐sections for Si–H to Si–Si bonds and for Si–H2 to Si–Si bonds are equal to 0.65 ± 0.07 and 0.25 ± 0.03, respectively. It allows to measure the concentration of hydrogen in a‐Si:H films. The developed approach can be applied for in situ control of hydrogen in a‐Si:H films and also suitable for thin a‐Si:H films on substrates that are opaque in infrared spectral region. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
In this work, hydrogen plasma etching of surface oxides was successfully accomplished on thin (~100 µm) planar n‐type Czochralski silicon wafers prior to intrinsic hydrogenated amorphous silicon [a‐Si:H(i)] deposition for heterojunction solar cells, using an industrial inductively coupled plasma‐enhanced chemical vapour deposition (ICPECVD) platform. The plasma etching process is intended as a dry alternative to the conventional wet‐chemical hydrofluoric acid (HF) dip for solar cell processing. After symmetrical deposition of an a‐Si:H(i) passivation layer, high effective carrier lifetimes of up to 3.7 ms are obtained, which are equivalent to effective surface recombination velocities of 1.3 cm s–1 and an implied open‐circuit voltage (Voc) of 741 mV. The passivation quality is excellent and comparable to other high quality a‐Si:H(i) passivation. High‐resolution transmission electron microscopy shows evidence of plasma‐silicon interactions and a sub‐nanometre interfacial layer. Using electron energy‐loss spectroscopy, this layer is further investigated and confirmed to be hydrogenated suboxide layers. (© 2015 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

10.
This paper concentrates on the impact of SiN passivation layer deposited by plasma-enhanced chemical vapor deposition(PECVD) on the Schottky characteristics in GaN high electron mobility transistors(HEMTs). Three types of SiN layers with different deposition conditions were deposited on GaN HEMTs. Atomic force microscope(AFM), capacitance-voltage(C-V), and Fourier transform infrared(FTIR) measurement were used to analyze the surface morphology, the electrical characterization, and the chemical bonding of SiN thin films, respectively. The better surface morphology was achieved from the device with lower gate leakage current. The fixed positive charge Q_f was extracted from C-V curves of Al/SiN/Si structures and quite different density of trap states(in the order of magnitude of 1011-1012 cm~(-2)) was observed.It was found that the least trap states were in accordance with the lowest gate leakage current. Furthermore, the chemical bonds and the %H in Si-H and N-H were figured from FTIR measurement, demonstrating an increase in the density of Q_f with the increasing %H in N-H. It reveals that the effect of SiN passivation can be improved in GaN-based HEMTs by modulating %H in Si-H and N-H, thus achieving a better Schottky characteristics.  相似文献   

11.
《Surface Science Reports》2014,69(4):196-295
This review introduces hydrogen depth profiling by nuclear reaction analysis (NRA) via the resonant 1H(15N,αγ)12C reaction as a versatile method for the highly depth-resolved observation of hydrogen (H) at solid surfaces and interfaces. The technique is quantitative, non-destructive, and readily applied to a large variety of materials. Its fundamentals, instrumental requirements, advantages and limitations are described in detail, and its main performance benchmarks in terms of depth resolution and sensitivity are compared to those of elastic recoil detection (ERD) as a competing method. The wide range of 1H(15N,αγ)12C NRA applications in research of hydrogen-related phenomena at surfaces and interfaces is reviewed.Special emphasis is placed on the powerful combination of 1H(15N,αγ)12C NRA with surface science techniques of in-situ target preparation and characterization, as the NRA technique is ideally suited to investigate hydrogen interactions with atomically controlled surfaces and intact interfaces. In conjunction with thermal desorption spectroscopy, 15N NRA can assess the thermal stability of absorbed hydrogen species in different depth locations against diffusion and desorption. Hydrogen diffusion dynamics in the near-surface region, including transitions of hydrogen between the surface and the bulk, and between shallow interfaces of nanostructured thin layer stacks can directly be visualized. As a unique feature of 15N NRA, the analysis of Doppler-broadened resonance excitation curves allows for the direct measurement of the zero-point vibrational energy of hydrogen atoms adsorbed on single crystal surfaces.  相似文献   

12.
We exposed a freshly deposited boron-doped, hydrogenated amorphous silicon (a-Si:H) layer to hydrogen plasma under conditions of chemical transport. In situ spectroscopic ellipsometry measurements revealed that atomic hydrogen impinging on the film surface behaves differently before and after crystallization. First, the plasma exposure increases hydrogen solubility in the a-Si:H network leading to the formation of a hydrogen-rich subsurface layer. Then, once the crystallization process engages, the excess hydrogen starts to leave the sample. We have attributed this unusual evolution of the excess hydrogen to the grown hydrogenated microcrystalline (μc-Si:H) layer, which gradually prevents the atomic hydrogen from the plasma reaching the μc-Si:H/a-Si:H interface. Consequently, hydrogen solubility, initially increased by the hydrogen plasma, recovers the initial value of an untreated a-Si:H material. To support the theory that the outdiffusion is a consequence and not the cause of the μc-Si:H layer growth, we solved the combined diffusion and trapping equations, which govern hydrogen diffusion into the sample, using appropriate approximations and a specific boundary condition explaining the lack of hydrogen injection during μc-Si:H layer growth.  相似文献   

13.
Passivation layer with linearly graded bandgap (LGB) was proposed to improve the performance of amorphous/crystalline silicon heterojunction (SHJ) solar cell by eliminating the large abrupt energy band uncontinuity at the a‐Si:H/c‐Si interface. Theoretical investigation on the a‐Si:H(p)/the LGB passivation layer(i)/c‐Si(n)/a‐Si:H(i)/a‐Si:H(n+) solar cell via AFORS‐HET simulation show that such LGB passivation layer could improve the solar cell efficiency (η) by enhancing the fill factor (FF) greatly, especially when the a‐Si:H(p) emitter was not efficiently doped and the passivation layer was relatively thick. But gap defects in the LGB passivation layer could make the improvement discounted due to the open‐circuit voltage (VOC) decrease induced by recombination. To overcome this, it was quite effective to keep the gap defects away from the middle of the bandgap by widening the minimum bandgap of the LGB passivation layer to be a little larger than that of the c‐Si base. The underlying mechanisms were analysed in detail. How to achieve the LGB passivation layer experimentally was also discussed. (© 2016 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

14.
张仿清  贺德衍  宋志忠  柯宁  陈光华 《物理学报》1990,39(12):1982-1988
本文用 11B(p,a)8 Be(Er=163keV)核反应分析方法,研究不同生长温度和退火温度对a-SiC:H(B)/a-Si:H异质结构中B原子浓度剖面分布的影响,由B原子浓度剖面分布的变化,分别估算了B在a-Si:H生长和退火过程中的扩散系数,结合电导率随膜厚度变化的测量,并依据最新提出的热平衡缺陷观点,对B的扩散过程作了分析。 关键词:  相似文献   

15.
刘昌龙 《中国物理 C》2001,25(12):1238-1244
室温下使用MeV能量级Si,F和O离子对5keV B离子预注入后的n-型单晶Si(100)进行了辐照,应用二次离子质谱仪测试分析了掺杂物B原子的分布剖面及其变化.结果表明,高剂量Si,F和O离子的附加辐照可以抑制热激活退火中B原子发生的瞬间增强扩散.在相同的辐照条件下,Si近表面区域中SiO2层的存在更有助于限制B原子的瞬间增强扩散.结合卢瑟福沟道背散射分析和DICADA程序计算对实验结果进行了讨论.  相似文献   

16.
Vertical phase separation of the polymer and fullerene molecules in bulk heterojunction organic solar cells influences the exciton dissociation, charge carrier transport and collection. This work compares the vertical phase separation of poly[2,1,3‐benzothiadiazole‐4,7‐diyl[4,4‐bis(2‐ethylhexyl)‐4H‐cyclopenta [2,1‐b:3,4‐b′]dithiophene‐2,6‐diyl]] (C‐PCPDTBT):[6,6]‐phenyl C71 butyric acid methyl ester (PC71BM) and poly[2,1,3‐benzothiadiazole‐4,7‐diyl[4,4‐bis(2‐ethylhexyl)‐4H‐cyclopenta [2,1‐b:3,4‐b′]dithiophene‐siloe2,6‐diyl]] (Si‐PCPDTBT):PC71BM blend films, using X‐ray photoemission spectroscopy depth profiles. The difference between the two polymers is the bridging atom, which is carbon for C‐PCPDTBT and silicon for Si‐PCPDTBT. Si‐PCPDTBT exhibits enhanced polymer chain packing and crystallinity. We believe this enhanced chain packing provides a driving force during film drying which alters the vertical morphology. The different nature of vertical phase separation plays a role in determining the increased device performance observed for Si‐PCPDTBT:PC71BM solar cells. (© 2014 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

17.
The hydrogen content in a-Si1−xGex:H thin films is an important factor deciding the density and the optical band gap. We measured the elemental depth profiles of hydrogen together with Si and Ge by elastic recoil detection analysis (ERDA) combined with Rutherford backscattering (RBS) using MeV He2+ ions. In order to determine the hydrogen depth profiles precisely, the energy- and angle-dependent recoil cross-sections were measured in advance for the standard sample of a CH3+-implanted Si substrate. The cross-sections obtained here are reproduced well by a simple expression based on the partial wave analysis assuming a square well potential (width: r0 = 2.67 × 10−13 cm, depth: V0 = −36.9 MeV) within 1%. For the a-Si1−xGex:H films whose elemental compositions were determined by ERDA/RBS, we measured the secondary ions yields of HCs2+, SiCs2+, H, Si and Ge as a function of Ge concentration x. As a result, it is found that the useful yield ratios of HCs2+/SiCs2+, H/Si and Ge/Si are almost constant and thus the elemental depth profiles of the a-Si1−xGex:H films can be also determined by secondary ion mass spectrometry (SIMS) within 10% free from a matrix effect.  相似文献   

18.
The interaction of atomic hydrogen with a-Si:H films was studied by means of in situ ESR during H plasma treatment. H diffuses into the a-Si:H film and creates additional Si dangling bonds ( approximately 10(13) cm (-2)). We observed a high diffusion coefficient (>10(-10) cm (2) s (-1)) at the very initial stage of H treatment (<1 s). The resulting additional dangling bonds are spatially distributed ( approximately 100 nm) into the bulk film. The characteristic depth of dangling bond (db) distribution decreases with increasing H treatment temperature. The activated rate constants of db creation and annihilation reactions determine the distribution of additional dangling bonds at different treatment temperatures.  相似文献   

19.
The depth profiles of protium and deuterium which were charged electrolytically, were measured by elastic recoil detection analysis (ERDA) and secondary ion mass spectrometry (SIMS) techniques in order to study the isotope effect in hydrogen absorption of Ti, Zr, Nb, Ni and Pd. The absolute loading ratios of H(D)/metal were calculated from the ERDA spectra and the depth profiles of SIMS were compared with the results of the ERDA. The isotope absorption ratios are estimated to be (D/H)Ti=0.43, (D/H)Zr=0.53, (D/H)Nb=0.17 and (D/H)Pd=0.10. The content in Ni is below the detection limit. The mass balance equations based on the transport–absorption model, were applied to analysis of the experimental results. This model reveals that the isotope absorption ratios for the Nb and Pd cases are governed mainly by the flux of hydrogen ions flowing to the surface of the metal electrode. However, the competition between the absorption–conversion process and the recombination process mainly determine the isotope ratio for the Ti and Zr cases.  相似文献   

20.
The intramolecular С=O→Si coordination in H‐complexes of (acetoxymethyl)trifluorosilane and (benzoyloxymethyl)trifluorosilane with proton donors HCl, PhOH, MeOH, and CHCl3 was investigated by density functional theory and second‐order Møller‐Plesset perturbation theory (MP2) methods. Interrelation and mutual influence of the intramolecular coordination bond С=O→Si and intermolecular hydrogen bonds C=O···H and Si–F···H in H‐complexes was established using the AIM and NBO analyses. The С=O→Si coordination is weakened by the C=O···H hydrogen bonding but enhanced by the Si–Fax···H hydrogen bonding. The structure of H‐complexes of (acetoxymethyl)trifluorosilane with proton donors in solution was determined by comparing the ν(C=O) and ν(Si–F) frequencies calculated using the conductor‐like polarizable continuum model and their experimental Fourier transform infrared values. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号