首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Magnetic polypropylene (PP) nanocomposites with different loadings (from 0.5 to 20 wt %) of carbon nanotubes with iron (CNT‐Fe) were fabricated using the melt‐mixing method. The carbon nanotubes were synthesized by pyrolysis of sawdust from the furniture industry. The morphological characterization shows homogenous dispersion of the filler in the polymer matrix. The addition of only 0.5 wt % CNT‐Fe already results in ferromagnetic behavior in the diamagnetic polymer matrix. The thermal properties were investigated using thermogravimetric analysis and differential scanning calorimetry. The results show an increase in the maximum degradation, crystallization, and melting temperatures of the nanocomposites compared with neat PP. The nanocomposites showed improvement in terms of mechanical and oxygen permeability properties. A very significant result of the work is the high remnant magnetization and coercivity values of the nanocomposites at room temperature whereas most of the works on similar systems show magnetic properties only at very low temperatures.  相似文献   

2.
采用正电子湮没寿命谱技术研究了尼龙6/碳纳米管纳米复合材料的自由体积特性。实验结果发现碳纳米管对纳米复合材料的自由体积孔洞尺寸影响甚微,而自由体积孔洞数目和相对自由体积分数均随碳纳米管含量的增加而明显减小。导致这种减小的原因可能来自两方面,其一是由于碳纳米管和基质聚合物间的相互作用限制了高分子链段运动;其二是碳纳米管填充增强了尼龙6基体结晶性能。此外,力学性能研究表明,碳纳米管在复合材料中较均匀的分散和较好的界面接触可以提高材料的力学强度,而自由体积分数的减小则使材料的韧性变差。  相似文献   

3.
The typical nano-carbon materials, 1D fiber-like carbon nanotubes (CNTs) and 2D platelet-like graphene nanosheets (GRNs), that have attracted tremendous attention in the field of polymer nanocomposites due to their unprecedented properties, are used as conducting filler to induce a considerable improvement in the mechanical, thermal and electrical properties of the resulting graphene/polymer nanocomposites at very low loading contents. This study deals with the preparation and electro-stimulus response properties of polyurethane (PU) dielectric elastomer films with such 1D and 2D nanocarbon fillers embedded in the polymer matrix. The various forms of carbon used in composite preparation include CNT, GRN and CNT-GRN hybrid fillers. Results indicate that the dielectric, mechanical and electromechanical properties depend on the carbon filler type and the carbon filler weight fraction. Here, it has been also established that embedding CNT-GRN hybrid fillers into pristine polyurethane endows somewhat better dispersion of CNTs and GRNs as well as better interfacial adhesion between the carbon fillers and matrix, which results in an improvement in electric-induced strain. Therefore, the nanocomposites seem to be very attractive for microelectromechanical systems applications.  相似文献   

4.
碳纳米管改性聚苯硫醚熔纺纤维的结构与性能研究   总被引:1,自引:0,他引:1  
将多壁碳纳米管(MWCNTs)和聚苯硫醚(PPS)经过熔融挤出后制备成复合材料切片,并采用熔融纺丝法制得碳纳米管改性聚苯硫醚复合纤维.采用扫描电镜(SEM)、拉曼光谱、示差扫描量热分析(DSC)、动态机械分析(DMA)以及力学性能测试等表征手段研究了复合纤维中碳管的分散状态,与基体的界面作用,复合纤维的结晶性能以及力学性能,从而探讨了聚苯硫醚/碳纳米管复合纤维体系的微观结构与宏观性能之间的关系.研究表明,聚苯硫醚分子结构与碳纳米管之间具有的π-π共轭作用使碳管较为均匀的分散在基体中,界面结合较为紧密.同时熔融纺丝过程中的拉伸作用使碳管进一步解缠并使碳管沿纤维拉伸方向取向.另一方面,拉曼光谱显示拉伸作用有效地增强了界面作用,有利于外界应力的传递.碳管的良好分散以及强的界面作用使复合纤维力学性能得到大幅度的提高,当碳管含量达到5 wt%时,复合纤维的模量有了明显的提高,拉伸强度较纯PPS纤维提高了近220%.  相似文献   

5.
Developing conductive networks in a polymer matrix with a low percolation threshold and excellent mechanical properties is desired for soft electronics applications. In this work, natural rubber (NR) functionalized with poly(methyl methacrylate) (PMMA) was prepared for strong interfacial interactions with multiwalled carbon nanotubes (MWCNT), resulting in excellent performance of the natural rubber nanocomposites. The MWCNT and methyl methacrylate functional groups gave good filler dispersion, conductivity and tensile properties. The filler network in the matrix was studied with microscopy and from its non-linear viscoelasticity. The Maier-Göritze approach revealed that MWCNT network formation was favored in the NR functionalized with PMMA, with reduced electrical and mechanical percolation thresholds. The obvious improvement in physical performance of MWCNT/methyl methacrylate functionalized natural rubber nanocomposites was caused by interfacial interactions and reduced filler agglomeration in the NR matrix. The modification of NR with poly(methyl methacrylate) and MWCNT filler was demonstrated as an effective pathway to enhance the mechanical and electrical properties of natural rubber nanocomposites.  相似文献   

6.
碳纳米管/聚合物纳米复合材料研究进展   总被引:12,自引:0,他引:12  
碳纳米管/聚合物纳米复合材料是近几年发展起来的一个新的研究方向。本文从增强和功能性两个方面评述了碳纳米管/聚合物纳米复合材料的发展过程以及最新进展,详细讨论了碳纳米管在聚合物中的分散、取向和胃面相互作用对复合材料力学性能的影响,介绍了碳纳米管的加入赋予聚合物的一些新的光电性能,并对今后的研究方向进行了展望。  相似文献   

7.
This work addresses the optimization of the morphology, thermal, and mechanical properties of polypropylene/layered double hydroxide (LDH) nanocomposites. For this, the nanofillers were modified by a calcination rehydration process using two surfactants, sodium dodecylsulfate (SDS) and sodium dodecylbenzenesulfonate, respectively. The nanofillers were characterized at each step of the modification process by thermal gravimetry, X‐ray diffraction, and Infra red spectroscopy. Furthermore, the impact of anionic modifiers on the filler surface energy and on the interactions toward water was analyzed. Polypropylene (PP)/LDH nanocomposites were then prepared by a melt intercalation process and a high molar mass maleic anhydride functionalized polypropylene (PPgMA) was introduced as a compatibilizer. The dispersion of LDH in the PP matrix was characterized and the thermal and mechanical properties of the corresponding nanocomposites were determined and discussed as a function of the filler modification, of the nanocomposite morphology, and of the filler/matrix interfacial properties. The nanocomposites prepared from SDS modified LDH and PPgMA exhibited superior properties thanks to an optimized filler dispersion state and improved interfacial interactions. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 782–794  相似文献   

8.
The unique rheological properties of a thermotropic liquid‐crystalline polymer (TLCP) were first studied. The thermal and shear history of the TLCP was found to play a critical role in its rheological properties. Crystallites were observed in the TLCP melt even above the melting temperature detected by differential scanning calorimetry. Because interfacial slip had long been suggested as an important reason for viscosity reduction in TLCP/thermoplastic blends, for the first time, interfacial slip at the TLCP/poly(ethylene naphthalate) (PEN) interface was investigated with an energy model. The model quantified the degree of interfacial slip at the TLCP/PEN interface by an energy factor. The calculated energy factors revealed a high degree of interfacial slip at the TLCP/PEN interface. It was proposed that the high rigidity of rodlike TLCP chains and their alignment parallel to the interface prevented mutual entanglements at the TLCP/PEN interface. The lack of mutual entanglements promoted the interfacial slip. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 302–315, 2004  相似文献   

9.
Poly(propylene carbonate) (PPC) is a new biodegradable aliphatic polycarbonate. However, the poor thermal stability and low glass transition temperatures (Tg) have limited its applications. To improve the thermal properties of PPC, organophilic montmorillonite (OMMT) was mixed with PPC by a solution intercalation method to produce nanocomposites. An intercalated-and-flocculated structure of PPC/OMMT nanocomposites was confirmed by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The thermal and mechanical properties of PPC/OMMT nanocomposites were investigated by thermal gravimetric analysis (TGA), differential scanning calorimetric (DSC), and electronic tensile tester. Due to the nanometer-sized dispersion of layered silicate in polymer matrix, PPC/OMMT nanocomposites exhibit improved thermal and mechanical properties than pure PPC. When the OMMT content is 4 wt%, the PPC/OMMT nanocomposite shows the best thermal and mechanical properties. These results indicate that nanocomposition is an efficient and convenient method to improve the properties of PPC.  相似文献   

10.
A reactive extrusion process was developed to fabricate polymer/graphene nanocomposites with good dispersion of graphene sheets in the polymer matrix. The functionalized graphene nanosheet (f‐GNS) activated by diphenylmethane diisocyanate was incorporated in thermoplastic polyester elastomer (TPEE) by reactive extrusion process to produce the TPEE/f‐GNS masterbatch. And then, the TPEE/f‐GNS nanocomposites in different ratios were prepared by masterbatch‐based melt blending. The structure and morphology of functionalized graphene were characterized by Fourier transform infrared, X‐ray photoelectron spectroscopy, X‐ray diffraction and transmission electron microscopy (TEM). The incorporation of f‐GNS significantly improved the mechanical, thermal and crystallization properties of TPEE. With the incorporation of only 0.1 wt% f‐GNS, the tensile strength and elongation at break of nanocomposites were increased by 47.6% and 30.8%, respectively, compared with those of pristine TPEE. Moreover, the degradation temperature for 10 wt% mass loss, storage modulus at ?70°C and crystallization peak temperature (Tcp) of TPEE nanocomposites were consistently improved by 17°C, 7.5% and 36°C. The remarkable reinforcements in mechanical and thermal properties were attributed to the homogeneous dispersion and strong interfacial adhesion of f‐GNS in the TPEE matrix. The functionalization of graphene was beneficial to the improvement of mechanical properties because of the relatively well dispersion of graphene sheets in TPEE matrix, as suggested in the TEM images. This simple and effective approach consisting of chemical functionalization of graphene, reactive extrusion and masterbatch‐based melt blending process is believed to offer possibilities for broadening the graphene applications in the field of polymer processing. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
In this study, polyamide 12 (PA12)/untreated halloysite nanotubes (HNTs) nanocomposites are prepared in a semi‐industrial scale extruder using a non‐traditional “one step” water‐assisted extrusion process. A morphological study is carried out using a combination of scanning electron microscopy and transmission electron microscopy analyses to evaluate the influence of water injection and filler content on the quality of clay dispersion. The use of water injection slightly improves the nanoscale dispersion at low HNTs content (<8 wt.%), while this effect is more pronounced at higher filler loading (16 wt.%). A mechanism explaining the physico‐chemical action of water during extrusion is proposed. The materials are characterized with respect to their mechanical, thermo‐mechanical, thermal and fire properties. A strong correlation is found between nanostructure and physical properties; the more uniform dispersion of the clay nanotubes, the higher mechanical reinforcement, thermal stability and fire retardancy of PA12 nanocomposites. Tensile tests results are interpreted in terms of three mechanical models: the Halpin–Tsai's model for stiffness and the interfacial strength model and the Pukanszky's equation for yield strength. Linear fits of the experimental data confirm that the superior reinforcement of nanocomposites prepared using water injection results from improved clay dispersion and better interfacial adhesion between PA12 and HNTs. In view of these promising results, the proposed direct melt compounding method could be easily scaled‐up towards the production of PA12–HNTs nanocomposites at an industrial scale. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
Polymer nanocomposites consisting of multiwall carbon nanotube (MWCNT) and poly(ethylene 2,6‐naphthalate) (PEN) were prepared by a melt blending process in a twin‐screw extruder. The storage modulus (G′) and loss modulus (G″) of the PEN/MWCNT nanocomposites increased with increasing frequency, and this increment being more significant at low frequency. The terminal zone slope of G′ for the PEN/MWCNT nanocomposites decreased with increasing MWCNT content, and the nonterminal behavior of those was related to the dominant nanotube–nanotube interactions at higher MWCNT content, leading to the formation of the interconnected or network‐like structures of MWCNT in the polymer nanocomposites. The decrease in the slope of the plot of log G′ versus log G″ for the PEN/MWCNT nanocomposites with increasing MWCNT content suggested the changes in the microstructures of the polymer nanocomposites by incorporating MWCNT. The incorporation of very small quantity of MWCNT significantly improved the mechanical properties of the PEN/MWCNT nanocomposites. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1062–1071, 2006  相似文献   

13.
Silica nanoparticles of various sizes have been incorporated by melt compounding in a poly(methyl methacrylate) (PMMA) matrix to enhance its thermal and mechanical properties. In order to improve nanoparticles dispersion, PMMA grafted particles have been prepared by atom transfer radical polymerization (ATRP) from well-defined silica nanoparticles. This strategy was expected to ensure compatibility between both components of the PMMA nanocomposites. TEM analysis have been performed to evaluate the nanosilica dispersion whereas modified and non-modified silica/PMMA nanocomposites thermal stability and mechanical properties have been investigated by both thermogravimetric and dynamical mechanical analysis.  相似文献   

14.
Polymer blend nanocomposites based on thermoplastic polyurethane (PU) elastomer, polylactide (PLA) and surface modified carbon nanotubes were prepared via simple melt mixing process and investigated for its mechanical, dynamic mechanical and electroactive shape memory properties. Chemical and structural characterization of the polymer blend nanocomposites were investigated by Fourier Transform infrared (FT-IR) and wide angle X-ray diffraction (WAXD). Loading of the surface modified carbon nanotube in the PU/PLA polymer blends resulted in the significant improvement on the mechanical properties such as tensile strength, when compared to the pure and pristine CNT loaded polymer blends. Dynamic mechanical analysis showed that the glass transition temperature (Tg) of the PU/PLA blend slightly increases on loading of pristine CNT and this effect is more pronounced on loading surface modified CNTs. Thermal and electrical properties of the polymer blend composites increases significantly on loading pristine or surface modified CNTs. Finally, shape memory studies of the PU/PLA/modified CNT composites exhibit a remarkable recoverability of its shape at lower applied dc voltages, when compared to pure or pristine CNT loaded system.  相似文献   

15.
The deformation of dispersed droplets of a thermotropic liquid crystalline polymer in a polyamide (nylon 6) matrix was studied by morphological observation. An immiscible binary blend and compatibilized ternary blends were studied. For the uncompatibilized blend, the morphology of the blends was that of a typical immiscible blend showing poor adhesion and no deformation of the dispersed phase. For the compatibilized blend, deformation of the dispersed TLCP phase was observed even if the viscosity of the matrix was lower than that of the TLCP phase. Compatibilizer addition improved the interfacial adhesion, hence enabled TLCP droplets to be deformed. A simple mechanism for the deformation of TLCP droplets was presented considering characteristic rheological properties of the TLCP melt.  相似文献   

16.
Multi-walled carbon nanotubes (CNTs) were non-covalently functionalized by surface wrapping of poly(sodium 4-styrenesulfonate) (PSS) with the aid of ultrasound. The functionalized CNTs were incorporated into poly(butylene succinate) (PBS) through solution coagulation to fabricate CNTs filled PBS nanocomposites. The morphologies of the PBS/CNT nanocomposites were studied by scanning electron microscope (SEM) and transmission electron microscope (TEM), and the effect of loading of functionalized CNT on the rheological behavior, electrical conductivity and mechanical properties of the nanocomposites was investigated systemically. SEM observation indicates that functionalized CNTs dispersed in PBS matrix without obvious aggregation and showed good interfacial adhesion with the PBS phase. TEM observation reveals that a CNT network was formed when the loading of CNTs increased from 0.1 to 0.3 wt%. Rheological investigation indicates the formation of a CNT network with a percolation threshold of only 0.3 wt%. Significant improvement in electrical conductivity occurred at CNT loading of 0.3 wt%, with the value of electrical conductivity increasing by six orders of magnitude compared to neat PBS. Differential scanning calorimetry indicates that the melt crystallization temperature of PBS was improved by ∼14 °C with addition of only 0.05 wt% functionalized CNTs. Tensile tests indicate that both the yield strength and Young's modulus of PBS were apparently reinforced by incorporation of functionalized CNTs, while the elongation at break was reduced gradually.  相似文献   

17.
Composites of wood waste and high-density polyethylene (HDPE) resins and different melt flow index (MFIs) was development in this work. Therefore, it was possible to assess their effect on the mechanical, thermal, and morphologic properties of these composites. The formulations were prepared using a twin-screw extruder, and the MFI, tensile strength, flexural strength, and impact strength of the composites were analyzed. Additionally, the thermal properties were evaluated by differential scanning calorimetry (DSC). Finally, structural analyses using optical microscopy (OM) and scanning electron microscopy (SEM) were performed to assess the particles’ dispersion, distribution, and adhesion to the polymer matrix. The results indicated that composites from HDPE resins with a lower MFI yielded a better dispersion of the wood waste. During processing was observed, reduce the MFI and better dispersion of the polymer matrix, which positively influenced some of the mechanical properties analyzed in the study.  相似文献   

18.
Carbon nanotubes (CNTs) have long been recognized as the stiffest and strongest man-made material known to date.In addition,their high electrical conductivity has roused interest in the areas of electrical appliances and communication related applications.However,due to their miniature size,the excellent properties of these nanostructures can only be exploited if they are homogeneously embedded into light-weight matrices as those offered by a whole series of engineering polymers.In order to enhance their chemical affinity to engineering polymer matrices,chemical modification of the graphitic sidewalls and tips is necessary.The mechanical and electrical properties to date of a whole range of nanocomposites of various carbon nanotube contents are also reviewed in this attempt to facilitate progress in this emerging area.Recently,carbonaceous nano-fillers such as graphene and carbon nanotubes (CNTs) play a promising role due to their better structural and functional properties and broad range of applications in every field.Since CNTs usually form stabilized bundles due to van der Waals interactions,they are extremely difficult to disperse and align in a polymer matrix.The biggest issues in the preparation of CNTs reinforced composites reside in efficient dispersion of CNTs into a polymer matrix,the assessment of the dispersion,and the alignment and control of the CNTs in the matrix.An overview of various CNT functionalization methods is given.In particular,CNT functionalization using click chemistry and the preparation of CNT composites employing hyperbranched polymers are stressed as potential techniques to achieve good CNT dispersion.In addition,discussions on mechanical,thermal,electrical,electrochemical and applications ofpolymer/CNT composites are also included.  相似文献   

19.
<正> 热致液晶高分子(TLCP)是一种具有高强度、高模量和良好加工性能的新型高分子材料,在流场、温度场和应力场的作用下,易于取向,产生自增强效果.与工程塑料原位(insitu)复合,可以改善工程塑料的流变性能和加工性能,同时还可以提高工程塑料的力学  相似文献   

20.
The development of bio-based nanocomposites is of high scientific and industrial interest, since they offer excellent advantages in creating functional materials. However, dispersion and distribution of the nanomaterials inside the polymer matrix is a key challenge to achieve high-performance functional nanocomposites. In this context, for better dispersion, biobased triethyl citrate (TEC) as a dispersing agent in a liquid-assisted extrusion process was used to prepare the nanocomposites of poly (lactic acid) (PLA) and chitin nanocrystals (ChNCs). The aim was to identify the effect of the TEC content on the dispersion of ChNCs in the PLA matrix and the manufacturing of a functional nanocomposite. The nanocomposite film’s optical properties; microstructure; migration of the additive and nanocomposites’ thermal, mechanical and rheological properties, all influenced by the ChNC dispersion, were studied. The microscopy study confirmed that the dispersion of the ChNCs was improved with the increasing TEC content, and the best dispersion was found in the nanocomposite prepared with 15 wt% TEC. Additionally, the nanocomposite with the highest TEC content (15 wt%) resembled the mechanical properties of commonly used polymers like polyethylene and polypropylene. The addition of ChNCs in PLA-TEC15 enhanced the melt viscosity, as well as melt strength, of the polymer and demonstrated antibacterial activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号