首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
共焦扫描光学显微镜的高分辨率   总被引:1,自引:0,他引:1  
讨论了共焦扫描光学显微镜的高分辨率性质,指出共焦扫描显微镜由于采用点探测器,因而视场大大减小,信噪比大大提高,同时每幅图像逐点扫描形成,在光学系统信息能力不变的前提下,系统的空间域通带宽度增加和时域通带宽度减小。因而可成高分辨率的像,特别是其独特的深度分辨率特性使得可以实现光学断层扫描成像。给出了所研制的共焦扫描荧光显微镜所获得光学断层扫描图像  相似文献   

2.
Resolution enhancement techniques (RETs) have enabled the adoptin of optical lithography well below the wavelength of the exposing light. Examination of the history of RET and recent developments shows that only 3 of the 4 independent variables available for wavefront engineering have been utilized. This suggest that, with full utilization of polarization and other electromagnetic effects, optical lithography will be the manufacturing technology for ICs for the foreseeable future.  相似文献   

3.
A hybrid micro-macro-optical shuffle interconnection approach is described. The new concept minimizes distortion in multichip smart-pixel shuffle interconnection systems that use macro-optics to link dense arrays of vertical-cavity surface-emitting laser (VCSEL) sources and matching arrays of detectors. The typical narrow-beam cones of VCSEL's are exploited by use of beam-deflecting micro-optics to create an optical system that is symmetric about its aperture. Since symmetric systems are well known to cancel distortion, this novel concept provides the means to achieve the required high degree of interchip registration accuracy.  相似文献   

4.
The concept of a focusing monochromator with high energy resolution is presented. Different from conventional optical schemes, the device exploits not the angular but the spatial dispersion of synchrotron radiation. The wave theory of the monochromator is developed; it shows that the monochromator can reach an energy resolution of about 0.1 meV without significant loss of the spectral density of synchrotron radiation.  相似文献   

5.
《Physics letters. A》2020,384(3):126083
Optical time stretch imaging (OTSI), providing the capability of capturing the dynamics of fast single-shot or random events, overcomes the fundamental trade-off between imaging speed and sensitivity in ultrafast imaging regions. Lying at the heart of the OTSI is dispersive Fourier transformation, being capable of using large chromatic dispersion to map the spectrum of a broadband ultrashort optical pulse into a stretched time-domain waveform. Dispersive grating pair (DGP) is a unique solution to generate large chromatic dispersion for dispersive Fourier transformation at the wavebands, in which dispersion compensation fibers commonly suffer from high dispersion-to-loss ratio. Here we characterize the performances of DGP-based OTSI modality and analyze the crucial parameters that strongly impact on the temporal as well as spatial resolutions, and further discuss its merits and challenges. Our results demonstrate DGP-based OTSI, allowing creation of high resolution images, is an effective modality compared to fiber-based OTSI.  相似文献   

6.
陈玉芳  吴振聪  王敏 《应用光学》2020,41(2):235-241
为了克服太空环境的复杂性,满足航天工程的空间使用要求,研制一款2 500万像素宽光谱共焦成像的微型星载相机光学系统。该系统适应卫星发射和在轨道运行的恶劣环境,具有抗冲击震动、耐太空高温差强辐射,体积小,质量轻等优点。设计的系统可在450 nm~800 nm的谱段内清晰成像,焦距181 mm,入瞳口径45 mm,视场角10.4°,边缘相对照度0.81,轴上点MTF:0.57@55 lp/mm,0.33@110 lp/mm,畸变1.2%,镜头质量622 g,外形尺寸Φ58.3 mm×117 mm,抗辐照性能≥5 krad。通过温度适应性的模拟和优化,用户进行?30 ℃~+70 ℃光学镜头热真空试验,可正常工作。该系统已成功应用于天宫二号伴飞卫星相机中,获得的图像清晰稳定,为空间遥感实验观测发挥了重要的作用。  相似文献   

7.
Intravital imaging of large specimens is intrinsically challenging for postembryonic studies. Selective plane illumination microscopy (SPIM) has been introduced to volumetrically visualize organisms used in developmental biology and experimental genetics. Ideally suited for imaging transparent samples, SPIM can offer high frame rate imaging with optical microscopy resolutions and low phototoxicity. However, its performance quickly deteriorates when applied to opaque tissues. To overcome this limitation, SPIM optics were merged with optical and optoacoustic (photoacoustic) readouts. The performance of this hybrid imaging system was characterized using various phantoms and by imaging a highly scattering ex vivo juvenile zebrafish. The results revealed the system's enhanced capability over that of conventional SPIM for high‐resolution imaging over extended depths of scattering content. The approach described here may enable future visualization of organisms throughout their entire development, encompassing regimes in which the tissue may become opaque.

  相似文献   


8.
We describe the first results of a new magnetic resonance imaging (MRI) system specially developed for hand and wrist imaging. The system uses a small resistive water-cooled magnet with a vertical magnetic field of 0.1 T in an air gap of 15 cm. The console is based on a microcomputer with a vector signal processor and an image-processing board. There is actually no Faraday cage. For the whole hand, the in-plane spatial resolution is less than 1 mm in the 128 × 128-pixels format for typical slice thicknesses of 3 to 5 mm. Solenoidal volume coils for fingers were developed, giving, in the same matrix format, an in-plane high spatial resolution of 0.22 mm for a typical slice thickness of 3 mm.  相似文献   

9.
Adaptive optics optical coherence tomography for retina imaging   总被引:1,自引:0,他引:1  
When optical coherence tomography (OCT) is used for human retina imaging, its transverse resolution is limited by the aberrations of human eyes. To overcome this disadvantage, a high resolution imaging system for living human retina, which consists of a time domain OCT system and a 37-elements adaptive optics (AO) system, has been developed. The AO closed loop rate is 20 frames per second, and the OCT has a 6.7-μm axial resolution. In this paper, this system is introduced and the high resolution imaging results for retina are presented.  相似文献   

10.
The q-space imaging techniques and high angular resolution diffusion (HARD) imaging have shown promise to identify intravoxel multiple fibers. The measured orientation distribution function (ODF) and apparent diffusion coefficient (ADC) profiles can be used to identify the orientations of the actual intravoxel fibers. The present study aims to examine the accuracy of these profile-based orientation methods by comparing the angular deviations between the estimated local maxima of the profiles and the real fiber orientation for a fiber crossing simulated with various intersection angles under different b values in diffusion-weighted MRI experiments. Both noisy and noise-free environments were investigated. The diffusion spectrum imaging (DSI), q-ball imaging (QBI), and HARD techniques were used to generate ODF and ADC profiles. To provide a better comparison between ODF and ADC techniques, the phase-corrected angular deviations were also presented for the ADC method based on a circular spectrum mapping method. The results indicate that systematic angular deviations exist between the actual fiber orientations and the corresponding local maxima of either the ADC or ODF profiles. All methods are apt to underestimation of acute intersection and overestimation of obtuse intersection angle. For a typical slow-exchange fiber crossing, the ODF methods have a non-deviation zone around the 90 degrees intersection. Before the phase-correction, the deviation of ADC profiles approaches a peak at the 90 degrees intersection, while after the correction the ADC deviations are significantly reduced. When the b factor is larger than 1000 s/mm2, the ODF methods have smaller angular deviations than the ADC methods for the intersections close to 90 degrees . QBI method demonstrates a slight yet consistent advantage over the DSI method under the same conditions. In the noisy environment, the mean value of the deviation angles shows a high consistency with the corresponding deviation in the nose-free condition.  相似文献   

11.
热成像系统的空间和温度分辨极限   总被引:1,自引:0,他引:1  
陈立学 《应用光学》1995,16(1):13-16
从辐射传递理论出发,运用空间分辨和温度分辨的概念,分析了热成像系统的对给目标背景的极限分辨距离和望远镜头的选用准则,最后对给定系统进行了计算。  相似文献   

12.
We present the results of a simulation study of a multilayer structure for which strongly enhanced (resonant) electric fields are produced at the surface of, and in the interior of, a planar waveguide which is evanescently coupled to an incoming beam in a prism geometry. The resulting field enhancements can far exceed those associated with the well-known surface plasmon resonance in a typical silver film excited in the conventional attenuated total reflection geometry. Simulations are performed for optical bistability for the case of a typical YAG laser beam coupled to a zinc oxide (ZnO) waveguide, demonstrating that the effect should occur for reasonable values of the parameters involved.  相似文献   

13.
Three dimensional bilateral imaging is the standard for most clinical breast dynamic contrast-enhanced (DCE) MRI protocols. Because of high spatial resolution (sRes) requirement, the typical 1–2 min temporal resolution (tRes) afforded by a conventional full-k-space-sampling gradient echo (GRE) sequence precludes meaningful and accurate pharmacokinetic analysis of DCE time-course data. The commercially available, GRE-based, k-space undersampling and data sharing TWIST (time-resolved angiography with stochastic trajectories) sequence was used in this study to perform DCE-MRI exams on thirty one patients (with 36 suspicious breast lesions) before their biopsies. The TWIST DCE-MRI was immediately followed by a single-frame conventional GRE acquisition. Blinded from each other, three radiologist readers assessed agreements in multiple lesion morphology categories between the last set of TWIST DCE images and the conventional GRE images. Fleiss’ κ test was used to evaluate inter-reader agreement. The TWIST DCE time-course data were subjected to quantitative pharmacokinetic analyses. With a four-channel phased-array breast coil, the TWIST sequence produced DCE images with 20 s or less tRes and ~ 1.0×1.0×1.4 mm3 sRes. There were no significant differences in signal-to-noise (P=.45) and contrast-to-noise (P=.51) ratios between the TWIST and conventional GRE images. The agreements in morphology evaluations between the two image sets were excellent with the intra-reader agreement ranging from 79% for mass margin to 100% for mammographic density and the inter-reader κ value ranging from 0.54 (P<.0001) for lesion size to 1.00 (P<.0001) for background parenchymal enhancement. Quantitative analyses of the DCE time-course data provided higher breast cancer diagnostic accuracy (91% specificity at 100% sensitivity) than the current clinical practice of morphology and qualitative kinetics assessments. The TWIST sequence may be used in clinical settings to acquire high spatiotemporal resolution breast DCE-MRI images for both precise lesion morphology characterization and accurate pharmacokinetic analysis.  相似文献   

14.
研究了小目标在光电成像系统中的成像 ,讨论了光电成像系统中影响系统分辨率的两个主要因素 :光学系统的爱里斑和探测器的尺寸。通过对这两个因素的分析可以看到 ,光电成像系统中光学系统的F数以及系统的工作波段与探测器尺寸的相互制约关系  相似文献   

15.
轴对称综合孔径光学系统的调制传递函数和成像性质   总被引:2,自引:1,他引:1  
孙江芹  钱霖  吴泉英 《应用光学》2008,29(4):548-552
综合分析目前各种综合孔径光学系统的结构和成像特征,并对它们作了比较。使用数值模拟方法,对单环轴对称综合孔径光学系统和双环结构的轴对称系统进行分析,研究了轴对称综合孔径光学系统的结构形式及其调制传递函数(MTF),并对其成像性质作了评估与比较。讨论了一种4+2双环结构的轴对称综合孔径系统的结构形式,对其成像特点作了详细描述,最后运用图像复原维纳滤波器对系统成像图做了处理,以使这种轴对称综合孔径系统具有更理想的成像效果。  相似文献   

16.
A miniaturized optical probe with a magnetic-resistance (MR) position tracker and piezoelectric-transduce (PZT) mirror system was developed for endoscopic optical imaging. All of the optical components such as collimation and focal lenses, reflection mirror, PZT linear actuator and MR sensor were wholly packaged in a single scanning probe with a volume of 3.57 cm3. This endoscopic probe has the advantages of having a small volume, extended stroke length (4.5 mm), high scanning speed (18.2 mm/s), efficient recoupling ratio (78.3%) and high spatial resolution (11.7 μm) compared to conventional endoscopes. Consequently, it showed the potential for improving the endoscopic imaging system and utilizing the image-guided robotic surgery system.  相似文献   

17.
Mu J  Huang WP 《Optics letters》2011,36(6):1026-1028
A coupled-mode formulation based on complex local modes is developed for tapered and longitudinally varying optical waveguides. Different from the conventional coupled-mode theory that requires integration over the entire spectrum of radiation modes, the new formulation treats the radiation fields via discrete complex modes similarly to the guided modes. Accuracy, convergence, and scope of validity for the solutions of the complex coupled-mode equations are investigated in detail for a typical single-mode waveguide taper. It is demonstrated that the complex coupled-mode theory has overcome the difficulties of the conventional theory in simulation of radiation field effects while preserving the simplicity and intuitiveness of this popular method.  相似文献   

18.
Rupali Maji 《Optik》2011,122(18):1622-1624
There are found different established methods for measuring the frequency of an unknown microwave signal. Several resonating and electronic methods are found where the frequency of a microwave is measured with good performances, where each method has its own advantage. Here in this communication the authors propose a new concept of measuring the frequency of unknown microwave with the joint uses of reflecting semiconductor optical amplifier (RSOA) and electro-optic Pockel cell. To measure the frequency a known microwave source of variable and calibrated frequency is also required. Then with the help of a RSOA and electro-optic material one can find the unknown microwave frequency more accurately than that of any conventional mechanism. This method can extend a high degree of accuracy as optics is used to measure the unknown microwave frequency. As optical signal has million time greater frequency than that of microwave signal therefore a high degree of accuracy of frequency measurement is achieved. The electro-optic material takes the role of phase modulation for splitting an optical wave into several frequencies.  相似文献   

19.
为满足小型光纤陀螺对光学器件小体积的要求,对铌酸锂多功能集成光学小型化器件的结构做了分析和优化设计。采用BPM软件分析了Y形分支波导的S形波导损耗与弯曲长度及折射率差的关系。通过调整退火质子交换的工艺参数,增加了波导对光的束缚能力;降低了小型化芯片上S形波导的弯曲损耗;去掉了原有Y形波导的输出端直波导,直接由S形弯曲波导引至输出端,在更短的芯片上得到了更长的弯曲过渡区。设计制作的芯片长度由常规的20 mm减至12.5 mm,封装后的器件长度减小到20 mm,为目前同类常规器件尺寸的2/3。设计制作的器件插入损耗典型值小于2.5 dB,全温损耗变化量小于0.2 dB。  相似文献   

20.
本文对读出原理、像差要求、图谱质量进行深入研究,进而对读出技术进行深度整合与简化,实现光读出FPA红外成像系统小型化、轻量化、集成化。首先,从FPA的热-机械效应出发,介绍了光读出FPA红外成像系统的工作原理;然后,针对通常采用的光读出FPA红外成像系统体积大、重量大、结构复杂缺陷,提出了高集成度的新型光读出系统;接着,在分析讨论读出光路像差容限、特点的基础上,对以异形棱镜为核心元件的光读出系统进行了具体的光学仿真设计;最后,设计了集光、机、电、软技术的集成式光读出FPA红外成像系统。对系统样机测试结果表明:在确保成像性能的前提下,光读出FPA红外成像系统的体积减小到175 mm×83 mm×105 mm。以异形棱镜为核心元件的光读出技术,在满足成像精度和灵敏度的前提下,可减小读出系统的复杂程度,有效降低了光读出FPA红外成像系统的体积和重量,从而促进光读出FPA成像系统的工业化应用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号