首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A spherical shape of the outer surface of rotors of some types of noncontact gyroscopes gives rise to conditions, where the force field ensures the stability of the center of mass relative to the base and has an insignificant effect on the angular motion of the rotor. However, there are some effects (for instance, the Barnett—London effect), which lead to emergence of moments of mechanical forces even for spherical bodies. The effect of rotor elasticity on the motion of a superconducting deformable spherical solid body in a magnetic field is studies. It is shown that the moment of mechanical forces acting on the body in the magnetic field is proportional in the first approximation to the angular velocity squared. The effect of this moment on the dynamics of angular motion of the rotor is studied.  相似文献   

2.
The method of force sources is used to consider the planar problem of the motion of a circular cylinder in a viscous electroconductive medium with a magnetic field. The conventional and magnetic Reynolds numbers are assumed to be small. Expressions are obtained for the hydrodynamic reaction forces of the medium, acting on the moving cylinder. It is shown that as a result of the flow anisotropy in the medium, caused by the magnetic field, in addition to the resistance forces on bodies moving at an angle to the field, there are deflecting forces perpendicular to the velocity vector. The velocity field disturbances at great distances from the moving cylinder are determined.The problems of viscous electroconductive flow about solid bodies in the presence of a magnetic field constitute one of the divisions of magnetohydrodynamics. Motion of an electroconductive medium in a magnetic field gives rise to inductive electromagnetic fields and currents which interact with the velocity and pressure hydrodynamic fields in the medium [1, 2]. Under conditions of sufficiently strong interaction, the number of independent flow similarity parameters in MHD is considerably greater than in conventional hydrodynamics. This circumstance complicates the theoretical analysis of MHD flow about bodies, and therefore we must limit ourselves to consideration of individual particular flow cases.Here we consider the linear problem of the motion of an infinite circular cylinder in a viscous incompressible medium with finite electroconductivity located in a uniform magnetic field.There are many studies devoted to the flow of a viscous electroconductive medium with a magnetic field about solid bodies (see, for example, [3–5]). Because of this, some of the results obtained here include previously known results, which will be indicated below. In contrast to the cited studies, the examination is made by the method of force sources, suggested in [6]. This method permits obtaining integral equations for the distribution of the forces acting on the surface of the moving body. Their solution is obtained for small Reynolds and Hartmann numbers. Then the nature of the velocity disturbances at great distances from the body are determined. These results are compared with conventional viscous flow about a cylinder in the Oseen approximation.  相似文献   

3.
This paper presents laboratory-scale experimental results of the behavior of ferrofluids in porous media consisting of sands and sediments. Ferrofluids are colloidal suspensions of magnetic particles stabilized in various carrier liquids. In the presence of an external magnetic field, a ferrofluid becomes magnetized as the particles align with the magnetic field. We investigate the potential for controlling fluid emplacement in porous media using magnetic fields. These experiments show that in laboratory-scale porous media experiments (up to 0.25m), with both vertical gravitational forces and lateral magnetic forces acting simultaneously, the magnetic field produces strong attractive forces on the ferrofluid, particularly in the vicinity of the magnet. These holding forces result in a predictable configuration of the fluid in the porous medium which is dependent on the magnetic field and independent of flow pathway or heterogeneity of the porous medium. No significant retention effects due to flow through variably saturated sands are observed. While the proposed field engineering applications of ferrofluids are promising, the observations to date are particularly relevant at the laboratory scale where the decrease in magnetic field strength with distance from a magnet is less of a limitation than in larger scale applications. Ferrofluids may find immediate application in any situation where it is desirable to control the motion or final configuration of fluid in an experimental flow apparatus without direct physical contact.  相似文献   

4.
In the present paper an experimental and numerical analysis of a thermo-magnetic convective flow of paramagnetic fluid in an annular enclosure with a round rod core and a cylindrical outer wall is presented. It is complemented by an experimental analysis of natural convection depending on the inclination angle to show the stability of the present configuration. Convection in an annulus between two vertical co-axial cylinders resulting from gravitational and magnetic environments has been investigated. A strong magnetic field can be an alternative to heat transfer enhancement. The effect of the magnetic field on the convection of the paramagnetic fluid in the annular vessel in various positions was compared. The numerical analysis was done based on the continuity, momentum and energy equations. A term related to the magnetic buoyancy force was added to the momentum equation. The distributions of Nusselt number present minima in two positions of the enclosure, which depends on the reciprocal relationship between the gravitational and magnetising forces.  相似文献   

5.
A new type of vibrational lift force [1] acting on a spherical body oscillating in a viscous fluid near a rigid boundary is experimentally investigated. The interaction between the body and the cavity boundary creates a repulsion force which is capable of holding a heavy body in the gravity field at a certain distance from the floor and a light body at a certain distance from the ceiling. The repulsion force appears at a distance comparable with the Stokesian boundary layer thickness and increases as the surface is approached. Outside the viscous interaction range, the repulsion force is replaced by an attraction force which decays with distance. Dimensionless parameters governing the vibrational interaction are found and threshold curves, corresponding to the transition of bodies of different densities to the “suspended” state, are plotted as functions of a dimensionless frequency. The dependence of the repulsion and attraction forces on the distance between the body and the wall is studied.  相似文献   

6.
We consider the propagation of small disturbances in a paramagnetic conducting fluid in a uniform constant magnetic field. Because of coupling of the mechanical and magnetic effects, coupled magnetoacoustic oscillations of a wave nature develop in a certain (resonant) frequency region. The usual MHD waves and uniform magnetization oscillations occur far from resonance. Dissipative processes are accounted for.The equations of motion for a conducting paramagnetic fluid in which interaction of the hydrodynamic velocity with the magnetization and the magnetic field was taken into account phenomenologically were obtained in [1], One of the consequences of this interaction is the propagation of coupled magnetoelastic waves in the fluid; this phenomenon is examined in the present paper.  相似文献   

7.
The shape of the surface of a magnetic fluid containing a cylindrical body made of a well-magnetizable material (magnetic field concentrator) in a uniform applied magnetic field is studied experimentally and theoretically. Various static shapes of the surface are calculated numerically taking into account the gravity forces, the surface tension, and the dependence of the magnetic fluid magnetization on the magnetic field strength. It is found that there exists several equilibrium shapes of the magnetic fluid surface. Abrupt changes in the magnetic fluid surface and its hysteresis are predicted theoretically and observed experimentally. The theoretical and experimental results are compared.  相似文献   

8.
An uncoupled stress problem for an unbounded elastic soft ferromagnetic body with a spherical cavity in a magnetic field uniform at infinity is solved. The stresses, displacements, and magnetic quantities in the body are determined. The features of stress distribution over the body and its boundary surface are studied __________ Translated from Prikladnaya Mekhanika, Vol. 43, No. 10, pp. 42–48, October 2007.  相似文献   

9.
In this article, an analytical method is developed to obtain the response of magnetothermoelastic stress and perturbation of the magnetic field vector for a thick-walled spherical functionally graded materials (FGM) vessel. The vessel, which is placed in a uniform magnetic field, is subjected to an internal pressure and transient temperature gradient. Using the Hankel and Laplace transform techniques, the dynamic equation of magnetothermoelastic is solved and the radial and circumferential stresses as well as the perturbation of the magnetic field vector for a typical material are obtained. Moreover, the effect of magnetic field vector and material inhomogeneity on the stresses is investigated.  相似文献   

10.
The cleaning of gases with low concentrations of small ferromagnetic or paramagnetic particles is a difficult task for conventional filtration. A new alternative procedure, magnetic filtration, is used in this work. Iron oxide aerosol was generated by elutriation of iron oxide particles from a fluidized bed consisting of a mixture of Geldart-C iron oxide powder and large spherical Geldart-B sand particles. The aerosol was filtered by means of a magnetic filter which consisted of one, two or three iron grates staggered to each other. The experimental installation contained also an isokinetic sampling system and a Microtrac SRA 150 Particle Analyser. A theoretical expression for filtration efficiency was deduced from a previous model taking into account the different forces acting on the iron oxide particles. Experimental filtration efficiency matches quite well calculated theoretical efficiency. It was found that an increase in particle size, in thee number of grates or in the applied magnetic field produced higher filtration efficiencies up to 100% in some cases. In all filtration experiments pressure drop through the magnetic filter was very small.  相似文献   

11.
This study presents an analytical solution of thermal and mechanical displacements, strains, and stresses for a thick-walled rotating spherical pressure vessel made of functionally graded materials(FGMs). The pressure vessel is subject to axisymmetric mechanical and thermal loadings within a uniform magnetic field. The material properties of the FGM are considered as the power-law distribution along the thickness. Navier's equation, which is a second-order ordinary differential equation, is derived from the mechanical equilibrium equation with the consideration of the thermal stresses and the Lorentz force resulting from the magnetic field. The distributions of the displacement,strains, and stresses are determined by the exact solution to Navier's equation. Numerical results clarify the influence of the thermal loading, magnetic field, non-homogeneity constant, internal pressure, and angular velocity on the magneto-thermo-elastic response of the functionally graded spherical vessel. It is observed that these parameters have remarkable effects on the distributions of radial displacement, radial and circumferential strains, and radial and circumferential stresses.  相似文献   

12.
We consider slow steady flows of a conducting fluid at large values of the Hartmann number and small values of the magnetic Reynolds number in an inhomogeneous magnetic field. The general solution is obtained in explicit form for the basic portion (core) of the flow, where the inertia and viscous forces may be neglected. The boundary conditions which this solution must satisfy at the outer edges of the boundary layers which develop at the walls are considered. Possible types of discontinuity surfaces and other singularities in the flow core are examined. An exact solution is obtained for the problem of conducting fluid flow in a tube of arbitrary section in an inhomogeneous magnetic field.The content of this paper is a generalization of some results on flows in a homogeneous magnetic field, obtained in [1–8], to the case of arbitrary flows in an inhomogeneous magnetic field. The author's interest in the problems considered in this study was attracted by a report presented by Professor Shercliff at the Institute of Mechanics, Moscow State University, in May 1967, on the studies of English scientists on conducting fluid flows in a strong uniform magnetic field.  相似文献   

13.
In the present study, we have proposed an immersed‐boundary finite‐volume method for the direct numerical simulation of flows with inertialess paramagnetic particles suspended in a nonmagnetic fluid under an external magnetic field without the need for any model such as the dipole–dipole interaction. In the proposed method, the magnetic field (or force) is described by the numerical solution of the Maxwell equation without current, where the smoothed representation technique is employed to tackle the discontinuity of magnetic permeability across the particle–fluid interface. The flow field, on the other hand, is described by the solution of the continuity and momentum equations, where the discrete‐forcing‐based immersed‐boundary method is employed to satisfy the no‐slip condition at the interface. To validate the method, we performed numerical simulations on the two‐dimensional motion of two and three paramagnetic particles in a nonmagnetic fluid subjected to an external uniform magnetic field and then compared the results with the existing finite‐element and semi‐analytical solutions. Comparison shows that the proposed method is robust in the direct simulation of such magnetic particulate flows. This method can be extended to more general flows without difficulty: three‐dimensional particulate flows, flows with a great number of particles, or flows under an arbitrary external magnetic field. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
The coupled dynamics of multiple flexible filaments (also called monodimensional flags) flapping in a uniform fluid flow is studied numerically for the cases of a side-by-side arrangement, and an in-line configuration. The modal behaviour and hydrodynamical properties of the sets of filaments are studied using a Lattice Boltzmann–Immersed Boundary method. The fluid momentum equations are solved on a Cartesian uniform lattice while the beating filaments are tracked through a series of markers, whose dynamics are functions of the forces exerted by the fluid, the filaments flexural rigidity and the tension. The instantaneous wall conditions on the filaments are imposed via a system of singular body forces, consistently discretised on the lattice of the Boltzmann equation. The results exhibit several flapping modes for two and three filaments placed side-by-side and are compared with experimental and theoretical studies. The hydrodynamical drafting, observed so far only experimentally on configurations of in-line flexible bodies, is also revisited numerically in this work, and the associated physical mechanism is identified. In certain geometrical and structural configuration, it is found that the upstream body experiences a reduced drag compared to the downstream body, which is the contrary of what is encountered on rigid bodies (cars, bicycles).  相似文献   

15.
The hydrostatic force exerted on a nonmagnetic body in the form of an extended flat plate immersed in a magnetic fluid occupying a vessel with plane walls parallel to the plate surfaces is measured. The vessel is located in a nonuniform magnetic field whose absolute value decreases exponentially in the direction normal to the plate. Approximate models which take into account, in particular, perturbations of the field induced by the fluid and the nonlinearity of the law of fluid magnetization are developed to describe this force theoretically.  相似文献   

16.
We present an efficient algorithm for simulation of deformable bodies interacting with two-dimensional incompressible fluid flows. The temporal and spatial discretizations of the Navier–Stokes equations in vorticity stream-function formulation are based on classical fourth-order Runge–Kutta scheme and compact finite differences, respectively. Using a uniform Cartesian grid we benefit from the advantage of a new fourth-order direct solver for the Poisson equation to ensure the incompressibility constraint down to machine zero over an optimal grid. For introducing a deformable body in fluid flow, the volume penalization method is used. A Lagrangian structured grid with prescribed motion covers the deformable body which is interacting with the surrounding fluid due to the hydrodynamic forces and the torque calculated on the Eulerian reference grid. An efficient law for controlling the curvature of an anguilliform fish, swimming toward a prescribed goal, is proposed which is based on the geometrically exact theory of nonlinear beams and quaternions. Validation of the developed method shows the efficiency and expected accuracy of the algorithm for fish-like swimming and also for a variety of fluid/solid interaction problems.  相似文献   

17.
Basic problems of super-and hypersonic magnetohydrodynamics (MHD) associated with the determination of the integral characteristics of bodies and vehicles inside which there are systems generating a uniform magnetic field are considered. Three classes of flows, namely, flow in a hypersonic multimode fixed-geometry air-intake; internal and external flow in a model of a hypersonic vehicle containing an air-intake with an MHD generator, a combustion chamber, and a supersonic nozzle; and hypersonic flow past a blunt cone are studied using numerical simulation and theoretical analysis (on the basis of the complete averaged system of Navier-Stokes equations and the electrodynamic equations). Attention is concentrated on the presence of an additionalmagnetic force acting on the system generating themagnetic field and, consequently, on the body and initiating an additional drag (in the case of a vehicle-reducing its thrust). Attractive possibilities for MHD flow control, namely, an increase in the degree of flow compression in the air-intake, a reduction in the ignition length in the combustion chamber, and a decrease in the heat flux to the nose of the body, are noted, as well as negative effects associated with the action of the magnetic force on the bodies considered.  相似文献   

18.
A Lorentz force flowmeter is a noncontact electromagnetic flow-measuring device based on exposing a flowing electrically conducting liquid to a magnetic field and measuring the force acting on the magnet system. The measured Lorentz force is proportional to the flow rate via a calibration coefficient which depends on the velocity distribution and magnetic field in liquid. In this paper, the influence of different velocity profiles on the calibration coefficient is investigated by using numerical simulations. The Lorentz forces are computed for laminar flows in closed and open rectangular channels, and the results are compared with the simplified case of a solid conductor moving at a constant velocity. The numerical computations demonstrate that calibration coefficients for solid bodies are always higher than for liquid metals. Moreover, it can be found that for some parameters the solid-body calibration coefficient is almost twice as high as for a liquid metal. These differences are explained by analyzing the patterns of the induced eddy currents and the spatial distributions of the Lorentz force density. The result provides a first step for evaluating the influence of the laminar velocity profiles on the calibration function of a Lorentz force flowmeter.  相似文献   

19.
Various static surface shapes of a magnetic fluid containing bodies made of easily magnetizable materials (magnetic field concentrators) in a uniform applied magnetic field are numerically calculated with account for the gravity force, surface tension, and the dependence of the magnetic-fluid magnetization on the magnetic field strength. The possibility of a sudden change in surface shape is shown. Hysteresis in the surface shape with a cyclic increase and decrease in the applied field is predicted.  相似文献   

20.
Two-dimensional magnetic field and magneto-elastic stress solutions are presented for a magnetic material of a thin infinite plate with an elliptical hole under uniform magnetic field. The linear constitutive equation is used for the magnetic field and the stress analyses. The magneto-elastic stress is analyzed using Maxwell stress since only Maxwell stress is caused as a body force according to the electro magneto theory. Except the approximation of the plane stress state in which the plate is thin, no further assumption is made for the stress analysis, though Maxwell stress components are expressed by nonlinear terms. The rigorous boundary condition expressed by Maxwell stress is completely satisfied without any linear assumptions on the boundary. First, magnetic field and stress for soft ferromagnetic material is analyzed and then those for paramagnetic and diamagnetic materials are analyzed. It is stated that the stress components are the same expressions for those materials and the difference is only the magnitude of the permeability, though the magnetic fields are different each other in the plates. If the analysis of magnetic field of paramagnetic materials is easier than that of soft ferromagnetic material, the stress analysis may be carried out using the magnetic field for paramagnetic material. Shear deflection as well as stress in the direction of the plate thickness arises and the solutions are also obtained. Figures of the magnetic field and stress distribution are shown. Stress intensity factors are also derived.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号