首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
The chromatographic behavior of native titania was investigated in aqueous normal phase chromatography using a set of N-methylated xanthines as polar test solutes. In agreement with a hydrophilic interaction on a polar bed, the retention of xanthine models increased mainly along their molecular polarity. Adsorption of these molecules on the hydrated surface of titania prevailed as a retention mechanism for low water contents in the mobile phase. Several N-methylated xanthines could be easily discriminated along the number and position of their methyl groups while the nitrogen atom at position 3 was found deeply involved in the retention on titania. To get further insights on the interactions occurring on the surface of titania, the retention of xanthine derivatives based on ligand-exchange was evaluated as a function of the buffer concentration and type. The separation efficiency of native titania for the set of N-methylated xanthines was comparable to that observed on zirconia but lower than that obtained on native silica due to mixed-mode interactions. However, titania exhibited a superior ability to recognize several isomeric positions of xanthine derivatives in comparison to zirconia and silica.  相似文献   

2.
Chromatographic effects of dedicated stationary and mobile phase variations in hydrophilic interaction chromatography (HILIC) were investigated using a set of nucleobases, nucleosides and deoxynucleosides as polar test solutes. Retention and selectivity profiles were comparatively mapped on four in-house developed silica materials modified with short alkyl chains (C4, C5) which carry hydroxyl functionalities (including diol motifs) as well as embedded sulphide or sulphoxide groups. These data were complemented by results obtained with two commercially available diol-type phases and a bare silica column. Besides elucidation of packing-related aspects this work concentrated specifically on extending aqueous HILIC (AQ-HILIC) to nonaqueous polar-organic elution conditions herein termed NA-HILIC. The exchange of the polar modifier water by various alcohols in ACN-rich mobile phases containing 5 mM ammonium acetate decreased the eluotropic strength of the resulting eluents. The gain in retention largely followed the order ethanol (EtOH)>methanol (MeOH)>1,2-ethanediol (Et(OH)2) and was accompanied by distinct effects on chromatographic selectivity. For example, on the most polar home-made packing the purine nucleoside selectivity guanosine/adenosine increased from 2.25 in the AQ-HILIC (kguanosine=8.3) to 7.33 (kguanosine=59) in the NA-HILIC mode when EtOH was employed as NA modifier while this value was 5.84 and 2.93 with MeOH and Et(OH)2, respectively (eluent: 5 mM ammonium acetate in ACN/modifier 90:10 v/v). Besides the type of protic modifier its percentage as well the retention and selectivity effects upon varying the ammonium acetate concentration and column temperature, respectively, were also investigated. Notable inter-column differences were found for all of these elution parameters. A mixed-mode retention model composed of partitioning and adsorption is proposed for both AQ- and NA-HILIC retention processes. The potential of (i) the implementation of novel polar bondings (such as ones containing sulphoxide functionalities) and (ii) the comprehensive exploitation of elution variables (type of protic modifiers, salt, etc.) for providing new selectivity increments to the separation of polar analytes in HILIC is emphasised.  相似文献   

3.
A novel organic‐silica hybrid monolith was prepared through the binding of histidine onto the surface of monolithic matrix for mixed‐mode per aqueous and ion‐exchange capillary electrochromatography. The imidazolium and amino groups on the surface of the monolithic stationary phase were used to generate an anodic electro‐osmotic flow as well as to provide electrostatic interaction sites for the charged compounds at low pH. Typical per aqueous chromatographic behavior was observed in water‐rich mobile phases. Various polar and hydrophilic analytes were selected to evaluate the characteristics and chromatographic performance of the obtained monolith. Under per aqueous conditions, the mixed‐mode mechanism of hydrophobic and ion‐exchange interactions was observed and the resultant monolithic column proved to be very versatile for the efficient separations of these polar and hydrophilic compounds (including amides, nucleosides and nucleotide bases, benzoic acid derivatives, and amino acids) in highly aqueous mobile phases. The successful applications suggested that the histidine‐modified organic‐silica hybrid monolithic column could offer a wide range of retention behaviors and flexible selectivities toward polar and hydrophilic compounds.  相似文献   

4.
Separation of the two enantiomers of racemic α‐ and β‐amino acids on two ligand exchange chiral stationary phases (CSPs) prepared previously by covalently bonding sodium N‐((S)‐1‐hydroxymethy‐3‐methylbutyl)‐N‐undecylaminoacetate or sodium N‐((R)‐2‐hydroxy‐1‐phenylethyl)‐N‐undecylaminoacetate on silica gel was studied with variation of the organic modifier (methanol) concentration in the aqueous mobile phase. In particular, the variation of retention factors with changing organic modifier concentration in the aqueous mobile phase was found to be strongly dependent on both the analyte lipophilicity and the stationary phase lipophilicity. In general, the retention factors of relatively lipophilic analytes on relatively lipophilic CSPs tend to increase with increasing organic modifier concentration in the aqueous mobile phases while those of less lipophilic or hydrophilic analytes tend to increase. However, only highly lipophilic analytes show decreasing retention factors with increasing organic modifier concentration in the aqueous mobile phase on less lipophilic CSPs. The contrasting retention behaviors on the two CSPs were rationalized by the balance of the two competing interactions, viz. hydrophilic interaction of analytes with polar aqueous mobile phase and the lipophilic interaction of analytes with the stationary phase.  相似文献   

5.
Under the elution of methanol‐based mobile phase, the isocratic resolution of 12 biogenic amines, including 1 aromatic, 2 heterocyclic and 9 aliphatic amines, as the dansylated derivatives has been accomplished in less than 25 minutes on a 15 cm C8‐bonded column. The resolution can not be reproduced on other examined alkyl‐bonded phases (e.g., C4 and C18) under the same chromatographic conditions, or in the reversed‐phase mode. The retention, mainly as a result of hydrophobic interaction between analyte and stationary phase, can be adjusted by varying the percentage of methanol in the mobile phase. Also, incorporating acetic acid as additive to the mobile phase to protonate the analyte and silanol groups that are little shielding on the surface of silica gel reduces the dipole‐dipole interaction, and thus the retention scale, which in turn deteriorates the resolution. Furthermore, the elution reversal is plausible for some of analytes as a greater percent of acetic acid is used in the elution. Values of correlation coefficients (R2) range between 0.9995 and 0.9996, indicating good linearity.  相似文献   

6.
The efficient enantioseparation of 26 racemates has been achieved with the perphenylcarbamoylated cyclodextrin clicked chiral stationary phase by screening the optimum composition of mobile phase in high‐performance liquid chromatography. The chromatographic results indicate that both the retention and chiral resolution of racemates are closely related to the polarity of the mobile phases and the structures of analytes. The addition of alcohols can significantly tune the enantioseparation in normal‐phase high‐performance liquid chromatography. The addition of methanol and the ratio of ethanol/methanol or isopropanol/methanol played a key role on the resolution of flavonoids in ternary eluent systems. The chiral separation of flavonoids with pure organic solvent as mobile phase indicates the preferential order for chiral resolution is methanol>ethanol>isopropanol>n‐propanol>acetonitrile.  相似文献   

7.
This study investigated the influence of organic sample solvents on separation efficiency of basic compounds under strong cation exchange (SCX) mode. The mixtures of acidic aqueous solution and organic solvent such as acetonitrile, ethanol, methanol and dimethyl sulfoxide (DMSO) were tested as sample solvents. For later-eluting analytes, the increase of sample solvent elution strength was responsible for the decrease of separation efficiency. Thus, sample solvents with weak elution strength could provide high separation efficiencies. For earlier-eluting analytes, the retention of organic sample solvents was the main factor affecting separation efficiency. Weakly retained solvents could provide high separation efficiency. In addition, an optimized approach was proposed to reduce the effect of organic sample solvent, in which low ionic solvent was employed as initial mobile phase in the gradient. At last, the analysis of impurities in hydrophobic drug berberine was performed. The results showed that using acidic aqueous methanol as sample solvents could provide high separation efficiency and good resolution (R > 1.5).  相似文献   

8.
A novel imidazolium‐embedded iodoacetamide‐functionalized silica‐based stationary phase has been prepared by surface radical chain‐transfer polymerization. The stationary phase was characterized by Fourier transform infrared spectrometry, thermogravimetric analysis, and element analysis. Fast and efficient separations of polar analytes, such as nucleosides and nucleic acid bases, water‐soluble vitamins and saponins, were well achieved in hydrophilic interaction chromatography mode. Additionally, a mixed mode of hydrophilic interaction and reversed‐phase could be also obtained in the analysis of polar and nonpolar compounds, including weak acidic phenols, basic anilines and positional isomers, with high resolution and molecular‐planarity selectivity, outperforming the commercially available amino column. Moreover, simultaneous separation of polar and nonpolar compounds was also achieved. In conclusion, the multimodal retention capabilities of the imidazolium‐embedded iodoacetamide‐functionalized silica‐based column could offer a wide range of retention behavior and flexible selectivity toward hydrophilic and hydrophobic compounds.  相似文献   

9.
Two novel silica hydride‐based fluorinated bonded phases have been synthesized using a hydrosilation procedure to test combined fluorine and hydride selectivity. The bonded moieties were characterized by elemental and spectral analysis. Chromatographic testing was done using hydrophilic analytes in the aqueous normal phase mode. At higher amounts of the nonpolar solvent in the mobile phase, there should be increased retention for solutes such as acids, bases and other polar compounds, whereas nonpolar solutes can be retained when water is increased as in RP chromatography. The synergistic effects of the fluorinated phase selectivity and aqueous normal phase retention on a hydride surface have been explored for small polar molecules. The stability and repeatability of the hydride‐based fluorinated stationary phases were evaluated. The use of acetone as the organic component in the mobile phase was also tested.  相似文献   

10.
A series of phenyl‐bonded stationary phases with incorporated polar functional groups was subjected to an adsorption investigation. Measurement of acetonitrile and methanol adsorption was obtained using the minor disturbance method. It was observed that adsorption of organic solvent strongly depends on the presence of polar functional groups in the bonded phases that influence the hydrophobicity and polarity of the stationary phase surface. Additionally, relative adsorption of acetonitrile and methanol confirms earlier observations, that the presence of amine and amide groups in the stationary phase changes the relative elution strength of organic solvents. The heterogeneous surface of the stationary phase makes it possible to observe the competitiveness of the water and organic solvent adsorption.  相似文献   

11.
An investigation on the high‐performance liquid chromatography enantioseparation of 12 polyhalogenated 4,4′‐bipyridines on polysaccharide‐based chiral stationary phases is described. The overall study was directed toward the generation of efficient separations in order to obtain pure atropisomers that will serve as ligands for building homochiral metal organic frameworks. Four coated columns—namely, Lux Cellulose‐1, Lux Cellulose‐2, Lux Cellulose‐4, and Lux Amylose‐2—and two immobilized columns—namely, Chiralpak IC and IA—were used under normal, polar organic, and reversed‐phase elution modes. Moreover, Chiralcel OJ was considered under normal‐phase and polar organic conditions. The effect of the chiral selector and mobile phase composition on the enantioseparation, the enantiomer elution order and the beneficial effect of nonstandard solvents were studied. The effect of water in the mobile phase on the enantioselectivity and retention was investigated and retention profiles typical of hydrophilic interaction liquid chromatography were observed. Interesting phenomena of solvent‐induced enantiomer elution order reversal occurred under normal‐phase mode. All the considered 4,4′‐bipyridines were enantioseparated at the multimilligram level.  相似文献   

12.
用大环抗生素替考拉宁手性固定相(TE CSP)分别与3,5-二甲基苯基异氰酸酯和苯基异氰酸酯反应得到了两种新型的高效液相色谱手性固定相----3,5-二甲基苯基异氰酸酯替考拉宁手性固定相(DMP-TE CSP)和苯基异氰酸酯替考拉宁手性固定相(Ph-TE CSP)。用十八个手性化合物在反相及极性流动相模式对这两种CSP的对映体分离能力进行了评价和比较。在反相流动相中,十二个化合物(包括八个氨基酸和四个非氨基酸化合物----对羟基苯甘氨酸,拉米夫定,醇酸和去甲羟安定)的对映体在这两种手性固定相上都获得了分离,大部分的溶质在DMP-TE上获得了更强的保留和稍好的手性分离效果。在极性流动相中,六个氨基醇类化合物在DMP-TE上获得了更强的保留,但它们在两种CSP上的选择因子几乎没有区别。对自制的替考拉宁衍生物手性固定相进行评价和比较,将有助于大环糖肽类抗生素手性固定相手性识别机理的研究。  相似文献   

13.
6‐(4‐Aminophenyl)‐5‐methyl‐4,5‐dihydro‐3(2H)‐pyridazinone is a key synthetic intermediate for cardiotonic agent levosimendan. Very few studies address the use of chiral stationary phases in chromatography for the enantioseparation of this intermediate. This study presents two efficient preparative methods for the isolation of (R)(?)‐6‐(4‐aminophenyl)‐5‐methyl‐4,5‐dihydro‐3(2H)‐pyridazinone in polar organic solvent chromatography and supercritical fluid chromatography using polysaccharide‐based chiral stationary phases and volatile organic mobile phases without additives in isocratic mode. Under optimum conditions, Chiralcel OJ column showed the best performance (α = 1.71, Rs = 5.47) in polar organic solvent chromatography, while Chiralpak AS column exhibited remarkable separations (α = 1.81 and Rs = 6.51) in supercritical fluid chromatography with an opposite enantiomer elution order. Considering the sample solubility, runtime and solvent cost, the preparations were carried out on Chiralcel OJ column and Chiralpak AS column (250 × 20 mm i.d.; 10 µm) in polar organic mode and supercritical fluid chromatography mode with methanol and CO2/methanol as mobile phases, respectively. By utilizing the advantages of chromatographic techniques and polysaccharide‐based chiral stationary phases, this work provides two methods for the fast and economic preparation of (R)(?)‐6‐(4‐aminophenyl)‐5‐methyl‐4,5‐dihydro‐3(2H)‐pyridazinone, which are suitable for the pharmaceutical industry.  相似文献   

14.
The simultaneous isocratic separation of a mixture of five phenolic acids and four flavonoids (two important groups of natural polyphenolic compounds with very different polarities) was investigated in three different RPLC modes using a hydro‐organic mobile phase, and mobile phases containing SDS at concentrations below and above the critical micellar concentration (submicellar LC and micellar LC (MLC), respectively). In the hydro‐organic mode, methanol and acetonitrile; in the submicellar mode methanol; and in the micellar mode, methanol and 1‐propanol were examined individually as organic modifiers. Regarding the other modes, MLC provided more appropriate resolutions and analysis time and was preferred for the separation of the selected compounds. Optimization of separation in MLC was performed using an interpretative approach for each alcohol. In this way, the retention of phenolic acids and flavonoids were modeled using the retention factors obtained from five different mobile phases, then the Pareto optimality method was applied to find the best compatibility between analysis time and quality of separation. The results of this study showed some promising advantages of MLC for the simultaneous separation of phenolic acids and flavonoids, including low consumption of organic solvent, good resolution, short analysis time, and no requirement of gradient elution.  相似文献   

15.
Retention of a model set of sulfonylurea compounds has been studied under RP‐LC conditions, considering competitional effects brought by different alcohols (ethanol, 1‐propanol, 2‐propanol, 1‐butanol, 1‐pentanol, and 1‐octanol) used as additives in the organic component of the mobile phase (methanol). The capacity factors determined for the model compounds decreased with the increase of the hydrophobic character of the organic additive in the mobile phase. The amount of the additive within the organic component of the mobile phase was kept constant (1% as volumetric ratio). Retention was studied at different mobile phase compositions (aqueous to organic component ratios). Different functional fitting models were used to correlate retention to the content of the organic component in the mobile phase. Extrapolation of retention expressed as capacity factor to a mobile phase composition free of organic component is well correlated to the hydrophobic characteristics of the organic additives. The adsorption model was used for tuning the experimental find‐outs. The possibility of controlling retention through the competitive effects induced by hydrophobic additives in the mobile phase is highlighted.  相似文献   

16.
A sol–gel titania poly(tetrahydrofuran) (poly-THF) coating was developed for capillary microextraction hyphenated on-line with high-performance liquid chromatography (HPLC). Poly-THF was covalently bonded to the sol–gel titania network which, in turn, became chemically anchored to the inner surface of a 0.25 mm I.D. fused silica capillary. For sample preconcentration, a 38-cm segment of the sol–gel titania poly-THF coated capillary was installed on an HPLC injection port as a sampling loop. Aqueous samples containing a variety of analytes were passed through the capillary and, during this process, the analytes were extracted by the sol–gel titania poly-THF coating on the inner surface of the capillary. Using isocratic and gradient elution with acetonitrile/water mobile phases, the extracted analytes were desorbed into the on-line coupled HPLC column for separation and UV detection. The sol–gel titania poly-THF coating was especially efficient in extracting polar analytes, such as underivatized phenols, alcohols, amines, and aromatic carboxylic acids. In addition, this coating was capable of extracting moderately polar and nonpolar analytes, such as ketones and polycyclic aromatic hydrocarbons. The sol–gel titania poly-THF coated capillary was also able to extract polypeptides at pH values near their respective isoelectric points. Extraction of these compounds can be important for environmental and biomedical applications. The observed extraction behavior can be attributed to the polar and nonpolar moieties in the poly-THF structure. This coating was found to be stable under extremely low and high pH conditions—even after 18 h of exposure to 1 M HCl (pH ≈0.0) and 1 M NaOH (pH ≈14.0).  相似文献   

17.
The surface excess adsorption isotherms of water, acetonitrile, and methanol from binary hydro‐organic mobile phases were investigated on nine home‐made stationary phases with chemically bonded amino acids, dipeptides, and tripeptides using the dynamic minor disturbance method. The stationary phases were modified by the following amino acids: glycine, alanine, phenylalanine, leucine, and aspartic acid. We investigated the influence of the type of immobilized amino acids, in particular their different side chains, on the solvent adsorption. The interpretation of solvation phenomena shows significant accumulation of investigated solvents on the adsorbent surface according to their hydrophilic or hydrophobic properties. Moreover, the accumulated amount was dependent on the length and type of amino acid sequences bonded to the silica surface. Stationary phases with bonded amino acids and peptides show stronger water and acetonitrile adsorption in contrast to the stationary phase modified with aminopropyl groups—a support for the synthesis. The comparison of water and acetonitrile adsorption as well as a data obtained with the two‐site adsorption model reveal and confirm the heterogeneity of chemically bonded phases. As a consequence of performed investigations, the classification of tested stationary phases for the potential usage in particular high‐performance liquid chromatography mode was also accomplished.  相似文献   

18.
王晓妮  张洁等 《中国化学》2003,21(3):311-319
With the combination of the the stoichiometric displacement model for retention (SDM-R) in reversed phase liquid chromatography (RPLC) and the stoichiometric displacement model for adsorption (SDM-A) in physical chemistry,the total number of moles of the re-solvated methanol of stationary phase side.nr,and that of solute side in the mobile phase,q,corresponding the one mole of the desorbing solute,were separately determined and referred as the characterization parameters of the contributions of the adsorption mechanism and partition mechanism to the solute retention,respectively.A chromatographic system of insulin,using mobile phase consisting of the pseudo-homologue of alcohols(methanol,ethanol and 2-propanol)-water and trifluoroacetic acid was employed.The maximum number of the methanol layers on the stationary phase surface was found to be 10.6,only 3 of which being valid in usual RPLC,traditionally referred as a volume process in partition mechanism.However,it still follows the SDM-R.Both of q and nr of insulin were found not to be zero,indicating that the retention mechanism of insulin is a mixed mode of partition mechanism and adsorption mechanism.When methanol is used as the organic modifier,the ratio of q/nr was 1.13,indicating the contribution to insulin retention due to partition mechanism being a bit greater than that due to adsorption mechanism.A linear relationship between q,or nr and the carbon number of the pseudo-homologue in the mobile phase was also found.As a methodology for investigating the retention mechanism retention and behavior of biopolymers.a homologue of organic solvents as the organic modifier in mobile phase has also been explored.  相似文献   

19.
This paper describes the use of graphene oxide/silica modified with nitro‐substituted tris(indolyl)methane as a solid‐phase extraction sorbent for the determination of organic acids. The resultant graphene oxide/silica modified with nitro‐substituted tris(indolyl)methane was characterized by FTIR spectroscopy and adsorption experiments. Solid‐phase extraction parameters such as sorbent type, sample solution pH, sample loading rate, eluent salt concentration, eluent methanol concentration, elution rate, sample loading, and elution volume were optimized. The method showed good precision, accuracy, sensitivity, and linear response for organic acids analysis over a concentration range of 1–100 μg/L for benzoic acid, p‐methoxybenzoic acid, and salicylic acid and 5–100 μg/L for the remaining organic acids (cinnamic acid, p‐chlorobenzoic acid, and p‐bromobenzoic acid) with coefficients of determination (r2) of higher than 0.9957. Limits of detection from 0.50 to 1.0 μg/L for six organic acids were achieved. The developed method was successfully applied to determine organic acids in real samples.  相似文献   

20.
The potential of enhanced‐fluidity liquid chromatography, a subcritical chromatography technique, in mixed‐mode hydrophilic interaction/strong cation‐exchange separations is explored, using amino acids as analytes. The enhanced‐fluidity liquid mobile phases were prepared by adding liquefied CO2 to methanol/water mixtures, which increases the diffusivity and decreases the viscosity of the mixture. The addition of CO2 to methanol/water mixtures resulted in increased retention of the more polar amino acids. The “optimized” chromatographic performance (achieving baseline resolution of all amino acids in the shortest amount of time) of these methanol/water/CO2 mixtures was compared to traditional acetonitrile/water and methanol/water liquid chromatography mobile phases. Methanol/water/CO2 mixtures offered higher efficiencies and resolution of the ten amino acids relative to the methanol/water mobile phase, and decreased the required isocratic separation time by a factor of two relative to the acetonitrile/water mobile phase. Large differences in selectivity were also observed between the enhanced‐fluidity and traditional liquid mobile phases. A retention mechanism study was completed, that revealed the enhanced‐fluidity mobile phase separation was governed by a mixed‐mode retention mechanism of hydrophilic interaction/strong cation‐exchange. On the other hand, separations with acetonitrile/water and methanol/water mobile phases were strongly governed by only one retention mechanism, either hydrophilic interaction or strong cation exchange, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号