首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
采用脉冲微波辅助化学还原合成新型载体钴-聚吡咯-碳(Co-PPy-C)负载PtNi催化剂.利用透射电镜(TEM)和X射线衍射(XRD)研究了催化剂的结构和形貌,此外,利用循环伏安(CV)和线性扫描伏安(LSV)等方法测试了催化剂的电化学活性及耐久性. PtNi/Co-PPy-C催化剂的金属颗粒直径约为1.77 nm,催化剂在载体上分布均匀且粒径分布范围较窄. XRD结果显示, PtNi/Co-PPy-C中Pt(111)峰最强, Pt主要是面心立方晶格.CV结果显示,其电化学活性面积(ECSA)为72.5 m2·g-1,明显高于商用催化剂Pt/C(JM)的56.9 m2·g-1.为进一步考查催化剂耐久性,电化学加速5000圈耐久性测试后, PtNi/Co-PPy-C颗粒发生明显集聚, ECSA衰减率和0.9 V下比质量活性衰减率分别为38.2%和63.9%.此外,采用有效面积为50 cm2的单电池用于评价自制催化剂的性能,发现在70 ℃且背压为50 kPa时电池的性能最好,此时自制PtNi/Co-PPy-C催化剂制备膜电极(MEA)的最大功率密度达到523 mW·cm-2.可见自制催化剂的电化学性能高于商用Pt/C(JM),在质子交换膜燃料电池(PEMFC)领域有一定的应用前景.  相似文献   

2.
Heavily boron-doped diamond electrode has been applied as a robust substrate for Pt based catalyst. However, by simply applying a planar electrode the effective surface area of the catalyst is limited. In this article we for the first time prepared vertically aligned Pt-diamond core-shell nanowires electrode in a convenient and scalable method (up to 6-inch wafer size). The diamond nanowires are first fabricated with reactive ion etching with metal nanoparticles as etching masks. The following Pt deposition was achieved by DC sputtering. Different amounts of Pt were coated on to the nanowires and the morphology of the core-shell wires is characterized by SEM and TEM. The catalytic oxygen/hydrogen adsorption/desorption response are characterized by cyclic voltammetry. The results show that the active Pt surface area is 23 times higher than a planar Pt electrode, and 4.3 times higher than previously reported on Pt nanoparticles on diamond by electro-deposition. Moreover, this highly active surface is stable even after 1000 full surface oxidation and reduction cycles.  相似文献   

3.
Pt修饰的Ni/C催化剂电催化氧化乙醇性能   总被引:2,自引:0,他引:2  
王星砾  王辉  雷自强  张哲  王荣方 《催化学报》2011,32(9):1519-1524
采用两步还原法制备了Pt修饰的Ni/C催化剂(Ni@Pt/C),并应用X射线衍射和透射电子显微镜对催化剂进行了表征.结果表明,载体上催化剂粒子呈两相复合结构,具有较好的分散性,平均粒径为4.4 nm.电化学测试表明,Ni@Pt/C催化氧化乙醇的活性电流高达0.37A/mg,是商业Pt/C催化剂的2.33倍,PtNi/C...  相似文献   

4.
In this study, a platinum electrode was coated with NiZn layer (Pt/NiZn) in a nickel-zinc bath by electrodeposition for use as anode material for methanol electrooxidation in alkaline solution. The electrode prepared was etched in a concentrated alkaline solution (30% NaOH) to produce a porous and electrocatalytic surface suitable for use in the methanol electrooxidation (Pt/NiZn). The surface morphologies and compositions of coating before and after alkaline leaching were determined by energy dispersive X-ray (EDX) and scanning electron microscopy (SEM) techniques. The effect of NiZn coated platinum electrode for methanol electrooxidation was investigated in 1 M NaOH solution by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) techniques. Methanol electrooxidation on Pt/NiZn electrode was studied at various temperatures and potential scan rates. The results showed that Pt/NiZn electrode behaved as an efficient catalyst for the electrooxidation of methanol in alkaline medium.  相似文献   

5.
In this paper In_2O_3 nanoshells have been synthesized via a facile hydrothermal approach.The nanoshells can be completely cracked into pony-size nanocubes by annealing,which are then used as a support of Pt catalyst for methanol and ethanol electrocatalytic oxidation.The prepared In_2O_3 and supported Pt catalysts(Pt/In_2O_3) were characterized by X-ray diffraction(XRD),energy dispersive X-ray spectroscopy(EDS),X-ray photoelectron spectroscopy(XPS),field effect scanning electron microscopy(FESEM),and transmission electron microscopy(TEM).Cyclic voltammetry(CV),linear sweep voltammetry(LSV),chronoamperometry and electrochemical impedance spectroscopy(EIS) were carried out,indicating the excellent catalytic performance for alcohol electrooxidation can be achieved on Pt/In_2O_3 nanocatalysts due to the multiple active sites,high conductivity and a mass of microchannels and micropores for reactant diffusions arising from 3D frame structures compared with that on the Pt/C catalysts.  相似文献   

6.
Pt nanoclusters attached to the monolayer choline (Ch) modified glassy carbon surface were successfully synthesized by use of in situ cyclic voltammetry (CV) method. Field emission scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and electrochemical impedance spectroscopy (EIS) were used to characterize the properties of this modified electrode. It was demonstrated that Ch was immobilized onto the carbon surface forming a covalently planted Ch monolayer, which could induce the formation of Pt nanoclusters. The preliminary study found that the homogeneous nanostructured Pt/Ch film exhibited remarkable electrocatalytic activity towards the oxidation of methanol and nitrite.  相似文献   

7.
PtRu/SnO_2/C catalyst was prepared in a polyol process, followed by reduction treatment and alkaline etching. X-ray diffraction, transmission electron microscope with energy dispersive spectrometer and Xray photoelectron spectroscopy were used to characterize the morphology, structure and composition of the catalysts. CO and methanol electro-oxidation activities of the catalysts were evaluated by CO stripping voltammetry, cyclic voltammetry and chronoamperometry measurements. Reduction treatment of the prepared PtRuSnO_2/C catalyst in a polyol process induced the enrichment of Sn on the surface, inhibiting methanol dissolution and CO adsorption on Pt. Alkaline etching removed Sn or SnO_x and thus exposed PtRu on the surface, resulting in enhanced activities for CO and methanol electro-oxidation due to the synergy effects of PtRu on the surface and Sn species beneath.  相似文献   

8.
This report describes the preparation of Pt-nanoparticle-coated gold-nanoporous film (PGNF) on a gold substrate via a simple "green" approach. The gold electrode that has been anodized under a high potential of 5 V is reduced by freshly prepared ascorbic acid (AA) solution to obtain gold nanoporous film electrode. Then the Pt nanoparticle is grown on the electrode by cyclic voltammetry (CV). The resulting PGNF electrode has highly ordered arrangement and large surface area, as verified by scanning electron microscopy (SEM) and CV, suggesting that the nanoporous gold film electrode provides a good matrix for obtaining PGNF with high surface area. Furthermore, the as-prepared PGNF electrode exhibited high electrocatalytic activity toward methanol oxidation in a 0.5 M H 2SO 4 solution containing 1.5 M methanol. The present novel strategy is expected to reduce the cost of the Pt catalyst remarkably.  相似文献   

9.
碳纳米管电极上原位沉积Pt纳米颗粒   总被引:1,自引:0,他引:1  
 本文利用原位离子交换法制备了碳纳米管(CNTs)载铂(Pt/CNTs)电极. X射线光电子能谱分析表明, Pt通过离子交换载于电化学功能化的CNTs表面. 扫描电镜照片显示, Pt高度分散于CNTs表面. X射线衍射分析表明, Pt的粒径约为4.0 nm. 离子交换法所制Pt/CNTs电极的电化学表面积和Pt的利用率均大于传统Pt/CNTs电极(Pt粒径约为2.5 nm), 其对氧还原的催化活性高于传统电极. 这归因于离子交换法所制电极的特殊结构,即Pt普遍载于电化学活性位上.  相似文献   

10.
A new type of carbon-free electrode catalyst, Pt/mesoporous WO3 composite, has been prepared and its electrochemical activity for methanol oxidation has been investigated. The mesoporous tungsten trioxide support was synthesized by a replicating route and the mesoporous composties with Pt loaded were characterized by using X-ray diffraction (XRD), nitrogen sorption, field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM) and energy-dispersive X-ray spectroscopy (EDS) techniques. Cyclic voltammetry (CV), line scan voltammetry (LSV) and chronoamperometry (CA) were adopted to characterize the electrochemical activities of the composites. The mesoporous WO3 showed high surface area, ordered pore structure, and nanosized wall thickness of about 6-7 nm. When a certain amount of Pt nanoparticles were dispersed in the pore structure of mesoporous WO3, the resultant mesostructured Pt/WO3 composites exhibit high electro-catalytic activity toward methanol oxidation. The overall electro-catalytic activities of 20 wt % Pt/WO3 composites are significantly higher than that of commercial 20 wt % Pt/C catalyst and are comparable to the 20 wt % PtRu/C catalyst in the potential region of 0.5-0.7 V. The enhanced electro-catalytic activity is attributed to be resulted from the assistant catalytic effect and the mesoporous structure of WO3 supports.  相似文献   

11.
采用离子束溅射(Ion Beam Sputtering,IBS)与Pt、Cu移动双靶技术,结合真空退火及酸蚀处理等后处理工艺,制备出PtCu/C薄膜催化剂。采用高分辨透射电镜(HRTEMSTEM)、原子力显微镜测试(AFM)、X射线衍射(XRD)测试薄膜催化剂的表面形貌及组织结构。通过循环伏安法(CV)和线性扫描伏安法(LSV)测试薄膜催化剂的电化学析氢性能。结果表明,经过真空退火(400℃保温1 h)及酸蚀处理(1 mol/L HNO3,50℃,120 h)后的薄膜催化剂出现类蜂窝状纳米多孔结构,其电化学析氢交换电流密度达到0.004 27 A/cm2,相较于未后处理样品的铂载量降低8.77%,催化性能提升20.62%。  相似文献   

12.
采用一步沉淀法,制备了纳米级Pt-CeO2/C电催化剂.透射电镜和X射线衍射表征结果表明,制备的催化剂Pt颗粒均匀分散于碳载体表面,其粒径主要分布于1.5~2.5 nm.将Pt-CeO2/C催化剂制备成质子交换膜燃料电池膜电极,经循环伏安和单电池极化曲线测试发现,Pt-CeO2/C催化剂性能与Pt/C催化剂的相当.一氧...  相似文献   

13.
利用X射线能量色散(EDS)谱、X射线衍射(XRD)谱、透射电子显微镜(TEM)和电化学等技术研究了在电解液中添加乙二胺四甲叉膦酸(EDTMP)对甲酸在Pd/C催化剂上电氧化性能的影响. 结果表明, 当EDTMP添加的浓度为0.5 mmol/L时, Pd/C催化剂对甲酸氧化的电催化活性和稳定性最好. 这主要归结于吸附在Pd/C催化剂表面的EDTMP不但能通过基团效应降低CO的吸附量, 还能抑制Pd/C催化剂催化甲酸分解的速率, 从而减少了CO的毒化作用. 但当EDTMP的浓度大于0.5 mmol/L时, 吸附过多的EDTMP反而会占据Pd的活性位点, 降低催化作用.  相似文献   

14.
吴昱  罗键 《物理化学学报》2016,32(11):2745-2752
采用水热合成法在泡沫镍上原位构建了低贵金属含量的钯/氢氧化镍纳米复合催化剂(Pd/Ni(OH)2/NF)。通过扫描电镜,能谱仪,X射线衍射仪和X射线光电子谱仪等分析技术表征了催化剂的形貌和微观结构;运用线性扫描伏安法,电化学阻抗谱和计时电流法等手段研究了催化剂的催化析氢性能。实验结果显示复合催化剂具有特殊的微观构型,超薄的Ni(OH)2薄片生长在泡沫镍表面,纳米尺寸的钯均匀地镶嵌在氢氧化镍薄片中。催化剂表面的氢氧化镍有利于促进水的解离,加快氢中间体的形成;均匀分散的钯极易吸附解离的氢中间体,快速地复合成氢气分子。我们发现复合催化剂能协同加快析氢反应过程,极大地降低析氢过电位,提高了析氢活性。此外,复合催化剂原位生长在泡沫镍上,有效地提高了催化电极的稳定性。  相似文献   

15.
采用超声辅助化学法和凝胶化反应相结合的工艺制备了中空铂镍/三维石墨烯电催化剂(PtNi/GCM). 利用X射线粉末衍射仪(XRD)、 X射线光电子能谱仪(XPS)、 扫描电子显微镜(SEM)和透射电子显微镜(TEM)等表征了催化剂的结构、 组成及微观形貌. 采用电化学工作站和旋转圆盘电极测试了催化剂对氧还原反应的电催化活性和稳定性. 结果表明, 铂和镍前驱体的不同摩尔比对催化剂的多孔结构、 粒子形貌和分散状态影响较大, 当摩尔比为1∶1时, 所得三维石墨烯中纳米粒子尺寸均一、 分散均匀. 该PtNi/GCM催化剂对氧还原具有优异的催化活性, 在半波电势(0.494 V)处, 质量比活性和面积比活性分别为1.09 A/mgPt和1.02 mA/cm2, 是商业Pt/C的5.4倍和3.5倍(0.20 A/mgPt, 0.29 mA/cm2). 同时, 该催化剂还具有很好的稳定性, 循环30000周后, 半波电势降低值是商业铂炭的43.6%.  相似文献   

16.
Devi R  Yadav S  Pundir CS 《The Analyst》2012,137(3):754-759
Xanthine oxidase (XOD) was immobilized on a composite film of zinc oxide nanoparticle/chitosan/carboxylated multiwalled carbon nanotube/polyaniline (ZnO-NP/CHIT/c-MWCNT/PANI) electrodeposited over the surface of a platinum (Pt) electrode. A xanthine biosensor was fabricated using XOD/ZnO-NP/CHIT/c-MWCNT/PANI/Pt as working electrode, Ag/AgCl as reference electrode and Pt wire as auxiliary electrode connected through a potentiostat. The ZnO-NPs were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM), and the enzyme electrode was characterized by cyclic voltammetry, scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy and electrochemical impedance spectroscopy (EIS). The biosensor showed optimum response within 4 s at 0.5 V potential, pH 7.0, 35 °C and linear range 0.1-100 μM with a detection limit of 0.1 μM. The enzyme electrode was employed for determination of xanthine in fish meat during storage. The electrode lost 30% of its initial activity after 80 uses over one month, when stored at 4 °C.  相似文献   

17.
《印度化学会志》2023,100(2):100876
The direct ethanol fuel cell is a green and renewable power source alternative to fossil fuels and produces less emissions compared to a combustion engine. Ethanol can be generated in great quantity from renewable resources like biomass through a fermentation process. Bio-generated ethanol is thus attractive fuel since growing crops for biofuels absorbs much of the carbon dioxide emitted into the atmosphere from the oxidation of ethanol. The platinum and palladium were co-deposited on graphite substrate by the galvanostatic technique and employed as anode catalyst for ethanol electrooxidation. The information on surface morphology, structural characteristics and bulk composition of the catalyst was obtained using scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy dispersive X-ray (EDX) spectroscopy. The cyclic voltammetry (CV) were used for the estimation of the electrochemically active surface area (ECSA) of the synthesized catalysts in alkaline medium. The CVs for ethanol oxidation revealed superior catalytic activity of Pt–Pd/C compared to Pd/C and Pt/C. The effect of OH? on ethanol oxidation at Pt–Pd/C catalyst was studied using cyclic voltammetry, quasisteady-state polarization, chronoamperometry, and electrochemical impedance spectroscopy (EIS). The Pt–Pd/C catalyst shows good stability and enhanced electrocatalytic activity is ascribed to the synergistic effect of higher electrochemical surface area, preferred OH? adsorption on the surface and palladium ad-atom contribution on the alloyed surface.  相似文献   

18.
A PtAuPd ternary alloy nanoparticle film with high particle density and small particle size is fabricated on a novel mercapto ionic liquid film via ultrasonic-electrodeposition, which is characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction and cyclic voltammetry. Owing to the excellent poison-tolerance and large effective surface area of the PtAuPd ternary alloy nanoparticles, the resulted composite film coated electrode presents high electrocatalytic activity and stability toward formaldehyde electro-oxidation.  相似文献   

19.
The oxidation of formaldehyde on a platinum (Pt)–palladium (Pd)–graphene nanocomposite glassy carbon electrode prepared by chemical reduction was characterized in 0.5?M sulfuric acid. The surface and morphology of the catalyst were characterized by transmission electron microscopy, Raman spectroscopy, and X-ray diffraction. Bimetallic Pt–Pd nanoparticles were uniformly dispersed on the graphene sheets. Energy-dispersed X-ray spectroscopy was used to characterize the metal composition of the nanocomposite. The electrocatalytical characteristics of the modified electrode were investigated by cyclic voltammetry. The results show that the electrode displayed high activity for the oxidation of formaldehyde in sulfuric acid with a linear relationship from 4.50?µM to 0.180?mM and a detection limit of 2.85?µM. The low detection limit, wide linear dynamic range, and high sensitivity of the modified electrode suggests further applications.  相似文献   

20.
A platinum (Pt) film coated n-silicon (Pt/n-n+-Si) was modified with nickel(II)-potassium hexacyanoferrate (NiHCF)-graphene sheets (GS) hybrid and used as a photo-electrochemical (PEC) sensor for non-enzyme hydrogen peroxide (H2O2) detection. A NiHCF film was deposited on the surface of GS/Pt/n-n+-Si electrode by chemical method. The structure and composition of the NiHCF film was characterized by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). PEC behavior of the NiHCF-GS/Pt/n-n+-Si electrode was investigated using cyclic voltammetry (CV) under illumination. The modified electrode has been used as PEC sensor for H2O2 detection with a linear range of 2.0 × 10?6–2.9 × 10?3 M and a detection limit of 1.0 × 10?6 M at a signal-to-noise ratio of 3 in a two-electrode cell with a Pt plate as counter electrode. The characteristics of GS layer have been discussed in both the improvement of sensibility and selectivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号