首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Conversion of Methane to C2 Hydrocarbons via Cold Plasma Reaction   总被引:1,自引:0,他引:1  
Direct conversion of methane to C2 hydrocarbons via cold plasma reaction with catalysts has been studied at room temperature and atmospheric pressure. Methane can be converted into C2 hydrocarbons in different selectivity depending on the form of the reactor, power of plasma, flow rate of methane, ratio of N2/CH4 and nature of the catalysts. The selectivity to C2 hydrocarbons can reach as high as 98.64%, and the conversion of methane as high as 60% and the yield of C2 hydrocarbons as high as 50% are obtained. Coking can be minimized under the conditions of: proper selection of the catalysts, appropriate high flow rate of inlet methane and suitable ratio of N2 to CH4. The catalyst surface provides active sites for radical recombination.  相似文献   

2.
《中国化学》2018,36(6):531-537
Raw and modified albite catalysts, including Pb/Albite and Fe/Albite catalysts, have been investigated for methane conversion to C2 hydrocarbons under non‐oxidative conditions. Introduction of Pb to albite improved the activity and selectivity to non‐coke products. Based on characterization, it was found that Pb entered into the alkali and alkaline‐earth metal sites of albite, while partial Fe doped in the tetrahedron sites and the other loaded on the surface of albite. At the reaction temperature of 1073 K, methane gas hourly space velocity (GHSV) of 2 L·gcat–1·h–1, catalyst dosage of 0.25 g (300 mesh), the methane conversion catalyzed by raw albite in the fixed‐bed micro reactor exhibited a methane conversion of 3.32%. Notably, introducing a Pb content of 3.4 wt% into albite greatly enhanced the conversion of methane up to 8.19%, and the selectivity of C2 hydrocarbons reached 99% without any coke under the same reaction conditions. While Fe‐doping could weakly heighten the methane conversion to 3.97%, and coke was formed. Thus, a comparison of Pb/Albite and Fe/Albite catalysts demonstrates that the catalytic activity of albite is mainly decided by alkali and alkaline‐earth metal sites, and lead‐modification can effectively improve the catalytic activity of albite.  相似文献   

3.
The effects of the tungsten concentration and of the method of tungsten introduction into ZSM-5 pentails with different SiO2/Al2O3 molar ratios on the acidity and the activity of the resulting catalysis in nonoxidative methane conversion into aromatic hydrocarbons are considered. The catalysts obtained from the SiO2/Al2O3 = 40 pentasil and a nanosized tungsten powder are the most active and the most stable. The maximum methane conversion and the highest yield of aromatic hydrocarbons are achieved on the zeolite containing 8.0 wt % tungsten nanopowder.  相似文献   

4.
The non-oxidative dehydro-oligomerization of methane to higher molecular weight hydrocarbons such as aroma tics and C2 hydrocarbons in a low temperature range of 773-973 K with Mo/HZSM-5,Mo-Zr/HZSM-5 and Mo-W/HZSM-5 catalysts is studied.The means for enhancing the activity and stability of the Mo-containing catalysts under the reaction conditions is reported.Quite a stable methane conversion rate of over 10% with a high selectivity to the higher hydrocarbons has been obtained at a temperature of 973 K.Pure methane conversions of about 5.2% and 2.0% have been obtained at 923 and 873 K,respectively.In addition,accompanied by the C2-C3 mixture,tht- methane reaction can be initiated even at a lower temperature and the conversion rate of methane is enhanced by the presence of tne initiator of C2-C3 hydrocarbons.Compared with methane oxidative coupling to ethylene,the novel way for methane transformation is significant and reasonable for its lower reaction temperatures and high selectivity to the desired prod  相似文献   

5.
The results of isobutanol conversion on micro-mesoporous composite MFI/MCM-41 synthesized using microwave irradiation were reported. It was shown that, unlike other described isobutanol conversion catalysts, this catalyst makes it possible to produce a hydrocarbon product containing a significant amount of aromatic hydrocarbons at low benzene content and also to avoid the undesirable formation of oxygen-containing products.  相似文献   

6.
The partial oxidation of methane to C2 hydrocarbons was investigated experimentally in a dielectric-barrier discharge (DBD) reactor. The effects of reactor wall temperature, input gas flow rate and volumetric ratio of methane to oxygen over methane conversion and C2 production were investigated. The highest C2 selectivity of about 50% was achieved at 1.8% methane conversion. Finally the model equations were used to correlate methane conversion and ethylene selectivity with the system variable within the studied range of them. The correlation equation shows the sole effects and interaction effects of system variables on methane conversion and ethylene selectivity.  相似文献   

7.
The experiments are carried out in the system of continuous flow reactors with dielectric-barrier discharge (DBD) for studies on the conversion of natural gas to C2 hydrocarbons through plasma catalysis under the atmosphere pressure and room temperature. The influence of discharge frequency, structure of electrode, discharge voltage, number of electrode, ratio of H2/CH4, flow rate and catalyst on conversion of methane and selectivity of C2 hydrocarbons are investigated. At the same time, the reaction process is investigated. Higher conversion of methane and selectivity of C2 hydrocarbons are achieved and deposited carbons are eliminated by proper choice of parameters. The appropriate operation parameters in dielectric-barrier discharge plasma field are that the supply voltage is 20–40 kV (8.4–40 W), the frequency of power supply is 20 kHz, the structure of (b) electrode is suitable, and the flow of methane is 20–60 mL · min−1. The conversion of methane can reach 45%, the selectivity of C2 hydrocarbons is 76%, and the total selectivity of C2 hydrocarbons and C3 hydrocarbons is nearly 100%. The conversion of methane increases with the increase of voltage and decreases with the flow of methane increase; the selectivity of C2 hydrocarbons decreases with the increase of voltage and increases with the flow of methane increase. The selectivity of C2 hydrocarbons is improved with catalyst for conversion of natural gas to C2 hydrocarbons in plasma field. Methane molecule collision with radicals is mainly responsible for product formation.  相似文献   

8.
The catalytic properties of Pt, Zn, and Ga deposited on supports of various natures (Al2O3, SiO2, NaZSM, and HZSM) in the dehydrogenation and aromatization of ethane were investigated. Pt-containing catalysts are the most active in the conversion of ethane: the selectivity with respect to ethylene is 25–87 % depending on the nature of the support. In the presence of Zn- and Ga-containing catalysts the yield of ethylene is 2–3 times lower than with Pt-catalysts. With HZSM modified by Pt, Zn, or Ga aromatic hydrocarbons (ArH) and methane are the main products of ethane transformation. Ga/HZSM is the most efficient catalyst of the aromatization of ethane under the conditions studied (550 °C, 120 h–1).Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 4, pp. 606–609, April, 1994.  相似文献   

9.
Development of highly effective catalysts for one-stage conversion of methane with high selectivity to valuable products and energy efficiency will provide an efficient way to utilize natural gas and oil-associated gases and to protect environment. In recent years, there have been many efforts on direct catalytic transformations of methane into higher hydrocarbons by feeding additives together with methane under non-oxidative conditions. This paper reviewed the advances in recent research on non-oxidative aromatization of methane in the presence of propane over different modified HZSM-5 catalysts. The thermodynamic consideration, the isotope verification and the mechanism of the activation of methane in the presence of propane are discussed in the paper in detail.  相似文献   

10.
A high-power microsecond pulsed microwave system operating in the X-band region was used for the catalytic conversion of methane. Microwave microsecond pulses at repetition rates of 50 and 80 Hz were used to initiate chemical reactions. The Microwave-Induced Acoustic technique was employed in combination with gas chromatography for on-line detection of chemical products. Methane was converted to C2 and C3 hydrocarbons. The selectivity of ethane in hydrocarbon products can be >90 %. The contribution of hydrogen evolution and carbon deposition has been shown to be important. A comparison between previous experiments performed with millisecond pulse durations is given.  相似文献   

11.
The feasibility of producing hydrocarbons in a microwave induced catalytic reaction of carbon and water was successfully demonstrated. The major reaction products are acetylene, methane, ethylene and ethane. Other significant products include propylene, propyne, cyclopropane, carbon dioxide and carbon monoxide. Relative product yields and their distribution depend on a number of experimental variables, such as irradiation time, incident microwave power, water/carbon ratio and the characteristics of the microwave pulse train. At short irradiation times and low incident power only C1 — C2 products were observed, their rates of formation being an exponential function of the incident microwave power. High incident power led to the formation of C3 to C6 hydrocarbons at the expense of acetylene. Initial addition of methane and carbon dioxide to the reaction mixture increased the yield of acetylene, whereas addition of methanol to water resulted in a sharp increase in the amounts of both methane and acetylene. Mechanisms are considered to account for these observations.  相似文献   

12.
The oxidative coupling of methane over (Bi2O3)1-x(WO3)x (x=0.2, 0.3, 0.4) oxygen ion conductive oxide catalysts irradiated by microwave has been studied. Compared with a conventional heating mode, the temperature of the catalytic bed is much lower with microwave irradiation and there is a change in selectivity favoring the production of C2 products.  相似文献   

13.
The direct conversion of methane using a dielectric barrier discharge has been experimentally studied. Experiments with different values of flow rates and discharge voltages have been performed to investigate the effects on the conversion and reaction products both qualitatively and quantitatively. Experimental results indicate that the maximum conversion of methane has been 80% at an input flow rate of 5 ml/min and a discharge voltage of 4 kV. Experimental results also show that the optimum condition has occurred at a high discharge voltage and higher input flow rate. In terms of product distribution, a higher flow rate or shorter residence time can increase the selectivity for higher hydrocarbons. No hydrocarbon product was detected using the thermal method, except hydrogen and carbon. Increasing selectivity for ethane was found when Pt and Ru catalysts presented in the plasma reaction. Hydrogenation of acetylene in the catalyst surface could have been the reason for this phenomenon as the selectivity for acetylene in the products was decreasing.  相似文献   

14.
Nonoxidative methane conversion into aromatic hydrocarbons over ZSM-5-type high-silica zeolites modified with nanosized powders of molybdenum (4.0 wt %) and silver (0.1–0.5 wt %) is reported. The acidic properties of the catalysts have been investigated by temperature-programmed ammonia desorption. The microstructure and composition of the Ag-Mo/ZSM-5 catalytic systems have been studied by high-resolution transmission electron microscopy and energy-dispersive X-ray spectroscopy. The doping of the Mocontaining zeolite with silver enhances its activity and stability in nonoxidative methane conversion into aromatic hydrocarbons.  相似文献   

15.
The effect of the manner and conditions of introducing lanthanum cations into NH4-ZSM-5 zeolite on the properties of catalysts for the conversion of dimethyl ether into the mixtures of gasoline hydrocarbons is studied. The physicochemical properties of synthesized catalysts are studied by means of temperature-programmed ammonia desorption, the adsorption of benzene, atomic absorption spectroscopy, differential scanning calorimetry, and thermogravimetry. It is shown that the degree to which lanthanum cations are replaced by ammonium cations both depends on the conditions of ion exchange in the zeolite and affects its acidity spectrum and the selectivity of the formation of paraffin hydrocarbons with isostructure. It is concluded that an increase in the amount of introduced lanthanum leads to an increase in the content of iso-paraffins from 69 to 76 wt % and a decrease in the content of aromatic hydrocarbons from 10.5 to 5.5 wt % and that of durene from 1.5 to 0.2 wt % in the products.  相似文献   

16.
The activities of the cobalt and zinc-impregnated HZSM-5 catalysts to the non-oxidative conversion of propane (C3) and methane (C1) into aromatic hydrocarbons were evaluated using a fixed-bed microreactor. C1 conversion reached 36.7% and the selectivity of aromatic products reached above 88.7% at atmospheric pressure, weight (hourly) space velocity (WHSV) 1.6 g h−1/(g cat)−1 and 873 K. The influence of the acidity and the ratio of cobalt in the catalyst on the conversion of methane and propane was evaluated. C1 incorporation was conclusively confirmed by the mass spectral analyses of aromatic products produced in a run with 13CH4 which shows a significant 13C enrichment in the C6H6+, C7H8+ and C8H10+ fragments. The methane activation could result from its hydrogen-transfer reaction with alkenes. These catalysts were thoroughly characterized using XRD, N2 adsorption measurements, TPD of NH3, and FT-IR. The results showed that the activation of methane in low temperature was due to existence of propane. The acidic changes and micropore area of the catalyst severely affected aromatization, and resulted in drastic modifications in product distribution. From this work, we found that only a small fraction of tetrahedral framework aluminum, which corresponds to the Bronsted acid sites, is sufficient to accomplish the aromatization of the intermediates in methane and propane aromatic reaction, while the superfluous strong Bronsted acid sites, which can be decreased by adding Co and Zn, are showed to be related with the aromatic carbonaceous deposits on the catalysts. The density of acidic site and the strength of strong acid decreased when the concentration of Co and Zn in the catalyst increased. Therefore, a much higher benzene yield and a longer durability of the catalysts are obtained when compared with the conventional HZSM-5 catalysts.  相似文献   

17.
微波诱导甲烷在活性炭/碳化硅上直接转化制C2烃   总被引:18,自引:0,他引:18  
 在高功率脉冲微波辐照下甲烷可在常压条件下在活性炭/碳化硅和活性炭碳化硅等 三种催化剂上直接转化为C2烃。研究结果表明,当使用合适的微波作用条件时,微波加热与微波 等离子协同作用可使甲烷在多孔碳化硅担载的活性炭催化剂上以很高的转化率和选择性直接转化为乙炔,除单独的微波加热诱导作用和微波等离子催化作用外,转移反应机制可能是微波加热与微波等离子交互作用的具体表现形式,对促进甲烷向乙炔直接转化起了重要作用。  相似文献   

18.
Experimental investigation has been conducted to convert methane into higher hydrocarbons in the presence of carbon dioxide within dielectric-barrier discharge (DBD) plasmas. The objectives of cofeed of carbon dioxide are to inhibit carbon deposit and to increase methane conversion. The products from this plasma methane conversion include: (1) syngas (H2+CO), (2) gaseous hydrocarbons containing ethylene, acetylene, and propylene, (3) liquid hydrocarbons, (4) plasma-polymerized film, and (5) oxygenates. The selectivity of products is subject to the DBD plasma-reactive conditions and catalyst applied. The liquid hydrocarbons produced by this way are highly branched, which represents a better fuel production.  相似文献   

19.
Efficient conversion of lignin to aromatic hydrocarbons via depolymerization and subsequent hydrodeoxygenation is important. Previously, we found that NbOx species played a key role in the activation and cleavage of C–O bonds in lignin and its model compounds. In this study, commercial niobic acid (HY-340), niobium phosphate (NbPO-CBMM) and lab-made layered niobium oxide (Nb2O5-Layer) were chosen as supports to study the effect of Brönsted and Lewis acids on the activation of C–O bonds in lignin conversion. A variety of Ru-loaded, Nb-based catalysts with different Ru particle sizes were prepared and applied to the conversion of p-cresol. The results show that all the Ru/Nb-based catalysts produce high mole yields of C7–C9 hydrocarbons (82.3–99.1%). What's more, Ru/Nb2O5-Layer affords the best mole yield of C7–C9 hydrocarbons and selectivity for C7–C9 aromatic hydrocarbons, of up to 99.1% and 88.0%, respectively. Moreover, it was found that Lewis acid sites play important roles in the depolymerization of enzymatic lignin into phenolic monomers and the cleavage of the C–O bond of phenols. Additionally, the electronic state and particle size of Ru are significant factors which influence the selectivity for aromatic hydrocarbons. A partial positive charge on the metallic Ru surface and a smaller Ru particle size are beneficial in improving the selectivity for aromatic hydrocarbons.  相似文献   

20.
考察了具有相同金属分散度的Pt/NaY、Pt/HNaY、 Pt/HY、Pt/NaBeta和Pt/HBeta催化剂中沸石载体的酸性对在低温下(≤250 ℃)甲烷两步等温转化反应以及由甲烷解离吸附产生的表面碳物种分布的影响。由甲烷等温两步转化生成的C2+烃类产物的总量随着载体酸性的增加而明显增加;C2~C6产物的分布也发生了变化。由表面碳物种的程序升温加氢结果表明,在各种催化剂上碳物种的形式是相似的,其总量和具有活性的Cα物种的量均因载体酸性增加而增加,反应性也增大。这种因沸石载体酸性变化而引起的载体效应是由金属和载体的相互作用造成负载在酸性载体上铂粒子的贫电子性而引起,即由金属粒子电子性质的变化而引起的催化性质的变化。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号