首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
The experiments are carried out in the system of continuous flow reactors with dielectric-barrier discharge (DBD) for studies on the conversion of natural gas to C2 hydrocarbons through plasma catalysis under the atmosphere pressure and room temperature. The influence of discharge frequency, structure of electrode, discharge voltage, number of electrode, ratio of H2/CH4, flow rate and catalyst on conversion of methane and selectivity of C2 hydrocarbons are investigated. At the same time, the reaction process is investigated. Higher conversion of methane and selectivity of C2 hydrocarbons are achieved and deposited carbons are eliminated by proper choice of parameters. The appropriate operation parameters in dielectric-barrier discharge plasma field are that the supply voltage is 20-40 kV (8.4-40 W), the frequency of power supply is 20 kHz, the structure of (b) electrode is suitable, and the flow of methane is 20-60 ml · min-1. The conversion of methane can reach 45%, the selectivity of C2 hydrocarbons i  相似文献   

2.
The partial oxidation of methane to C2 hydrocarbons was investigated experimentally in a dielectric-barrier discharge (DBD) reactor. The effects of reactor wall temperature, input gas flow rate and volumetric ratio of methane to oxygen over methane conversion and C2 production were investigated. The highest C2 selectivity of about 50% was achieved at 1.8% methane conversion. Finally the model equations were used to correlate methane conversion and ethylene selectivity with the system variable within the studied range of them. The correlation equation shows the sole effects and interaction effects of system variables on methane conversion and ethylene selectivity.  相似文献   

3.
Experimental investigation has been conducted to convert methane into higher hydrocarbons in the presence of carbon dioxide within dielectric-barrier discharge (DBD) plasmas. The objectives of cofeed of carbon dioxide are to inhibit carbon deposit and to increase methane conversion. The products from this plasma methane conversion include: (1) syngas (H2+CO), (2) gaseous hydrocarbons containing ethylene, acetylene, and propylene, (3) liquid hydrocarbons, (4) plasma-polymerized film, and (5) oxygenates. The selectivity of products is subject to the DBD plasma-reactive conditions and catalyst applied. The liquid hydrocarbons produced by this way are highly branched, which represents a better fuel production.  相似文献   

4.
The plasma technology served as a tool in unconventional catalysis has been used in natural gas conversion, because the traditional catalytic methane oxidative coupling reaction must be performed at high temperature on account of the stability of methane molecule. The focus of this research is to develop a process of converting methane to C2 hydrocarbons with non-equilibrium plasma technology at room temperature and atmospheric pressure. It was found that methane conversion increased and the selectivity of C2 hydrocarbons decreased with the voltage. The optimum input voltage range was 40-80 V corresponding to high yield of C2 hydrocarbons. Methane conversion decreased and the selectivity of C2 hydrocarbons increased with the inlet flow rate of methane. The proper methane flow rate was 20-40 ml/min (corresponding residence time 10-20 s). The experimental results show that methane conversion was 47% and the selectivity of C2 hydrocarbons was 40% under the proper condition using atmospheric DBD cold plasma technology. It was found that the breakdown voltage of methane VB was determined by the type of electrode and the discharge gap width in this glow discharge reactor. The breakdown voltage of methane VB,min derived from the Paschen law equation was established.  相似文献   

5.
采用刀片式不锈钢电极放电反应器,以Ar气为稀释气,研究了等离子体作用下甲烷转化制C2烃的工艺条件。考察了CH4流量、高频电源输入电压和电极间距等参数对甲烷转化率、C2烃选择性、收率和反应表观能耗的影响。结果表明,增加CH4流量,表观能耗随之降低;当输入电压和电极间距较小时,甲烷转化率随输入电压和电极间距的增大而增大,但输入电压和电极间距过大时,C2烃收率明显下降,积碳严重。在CH4流量14 mL/min、Ar气流量60 mL/min、高频电源输入电压22 V、电流0.44 A、电极间距4 mm的优化条件下,甲烷最高转化率为43.1%,C2烃收率、选择性和表观能耗分别为40.1%、93.2%和2.41 MJ/mol。C2烃中不饱和烃的体积分数可达95%以上。  相似文献   

6.
常压辉光放电等离子体转化CH4制C2烃的研究   总被引:3,自引:0,他引:3  
王达望  马腾才 《化学学报》2006,64(11):1121-1125
采用新型的旋转电极辉光放电反应器, 在常温常压下对辉光等离子体作用下的甲烷转化制C2烃进行了研究. 在氢气共存条件下, 考察了反应器电极的结构、材料, 输入电场峰值电压和反应物流率等参数对甲烷转化率和C2烃单程收率及其选择性的影响规律, 同时比较了不同反应器的能量效率. 结果表明: 在本实验条件下, 金属铜材料好于不锈钢, 螺旋形结构优于三排圆盘结构. CH4转化率和C2烃选择性和收率均随输入电场峰值电压的升高而增大, 随反应物流量的增加而减小. 从CH4转化率、C2烃的收率和选择性的指标来评价这些反应器, 采用旋转螺旋状铜电极反应器时最好, 当反应物流量为60 mL/min时, 甲烷最高转化率为77.31%, 对应的C2烃收率和选择性分别为75.66%和97.88%; 当能量密度为800 kJ/mol时, 能效最高为13.5%.  相似文献   

7.
The plasma technology served as a tool in unconventional catalysis has been used in natural gas conversion,because the traditional catalytic methane oxidative coupling reaction must be performed at high temperature on account of the stability of methane molecule.The focus of this research is to develop a process of converting methane to C2 hydrocarbons with non-equilibrium plasma technology at room temperature and atmospheric pressure.It was found that methane conversion increased and the selectivity of C2 hydrocarbons decreased with the voltage.The optimum input voltage range was 40-80 V corresponding to high yield of C2 hydrocarbons.Methane conversion decreased and the selectivity of C2 hydrocarbons increased with the inlet flow rate of methane.The proper methane flow rate was 20-40 ml/min (corresponding residence time 10-20 s).The experimental results show that methane conversion was 47% and the selectivity of C2 hydrocarbons was 40% under the proper condition using atmospheric DBD cold plasma technology.It was found that the breakdown voltage of methane VB was determined by the type of electrode and the discharge gap width in this glow discharge reactor.The breakdown voltage of methane VB,min derived from the Paschen law equation was established.  相似文献   

8.
The conversion of C1–C4 hydrocarbons into gaseous and liquid products in a dielectric barrier discharge plasma in the presence of water has been studied. The formation of a deposit on the electrode surface is prevented by introducing water in the liquid state into a gaseous hydrocarbon stream, a finding that has been confirmed by IR spectroscopic study of the electrode surface. Hydrogen and C2+ hydrocarbons have been detected among the gaseous products of conversion, the liquid products being represented by C6–C10+ alkanes. The total liquid products have amounted to 13.4, 26.0, or 36.6% for the methane, propane, or n-butane conversion, respectively. A 10% propane or butane admixture to methane increases the yield of the liquid products to make 22.0 and 31.7% for the methane–propane and the methane–butane mixture, respectively.  相似文献   

9.
大气压旋转螺旋状电极辉光放电等离子体催化甲烷偶联   总被引:2,自引:0,他引:2  
采用新研制的具有旋转螺旋状电极的大气压辉光放电等离子体反应器催化甲烷偶联制碳二烃. 实验采用铜电极和不锈钢电极分别考察了输入电场峰值电压和甲烷、氢气进料流量等参数对甲烷转化率和碳二烃收率、选择性的影响. 在长时间连续反应无明显积碳的情况下, 最佳试验结果是电极材料为金属铜, 进料流量为60 mL•min-1, V(CH4 )/V(H2)=1的条件下, 输入电场峰值电压为2.3 kV时, 甲烷转化率为70.64%, 碳二烃单程收率及其选择性分别为69.85%和 99.14%.  相似文献   

10.
The influence of the composition of catalytic systems and the method for H2 feed into the reaction area on the degree of conversion of CO2 during its joint transformations with ethanol and on the selectivity of formation of liquid organic products (ethyl acetate, acetaldehyde, and hydrocarbons) was studied atp=15 atm andT=573 K. A noticeable conversion of CO2 and ethanol into ethyl acetate and acetaldehyde was observed in the presence of only the intermetallic compound, its composition with a palladium-containing catalyst, and the whole ternary catalytic system. The selectivity of the reaction changed when the binary catalytic composition consisting of the intermetallic and γ-Al2O3 was used. In this case, the fraction of C9–C14 alkenes and alkenes with normal and iso structures was mostly formed; its content was as high as 40%. The degree of conversion of CO2 reached 30–36% and the selectivity to liquid products was 70–80% only when the hydrogen desorbed from the intermetallic was used. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 7, pp. 1360–1364, July, 1998.  相似文献   

11.
The mechanism for the formation of C2+ paraffins differs from the mechanism for the formation of methane. While methane is obtained due to hydrogenation of methyl groups, C2+ hydrocarbons are formed as the result of the conversion of alkyl intermediates into hydroalkene intermediates, which can decompose to give olefins or undergo hydrogenation to give saturated hydrocarbons. __________ Translated from Teoreticheskaya i éksperimental’naya Khimiya, Vol. 44, No. 3, pp. 175–179, May–June, 2008.  相似文献   

12.
Mixed oxides CoxAlyO4 with different Al/Co ratios applied as supports for the catalysts of the Fischer-Tropsch synthesis were prepared using the solid-state chemical reaction. The CoxAlyO4 supports were prepared by modifying gibbsite with various cobalt salts (acetate, nitrate, and basic carbonate). The use of basic cobalt carbonate gives the Co(20%)/CoxAlyO4 catalyst, which provides an increased yield of hydrocarbons C5+ and a decreased methane content compared to the impregnation catalyst Co(30%)/Al2O3. The introduction of small amounts of rhenium additives makes it possible to enhance the yield of hydrocarbons C5+ (179 g m−3) and also to increase the selectivity with respect to the C5–C18 fraction. The introduction of basic cobalt carbonate into the support, most likely, creates favorable conditions for the epitaxial growth of the precursor of the active phase. Dedicated to Academician G. A. Abakumov on the occasion of his 70th birthday. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1856–1860, September, 2007.  相似文献   

13.
Methane conversion by an air microwave plasma   总被引:6,自引:0,他引:6  
Activation of methane is carried out by means of an air microwave plasma (2.45 GHz). The experiments cover the absorbed microwave power range 350–650 W (20–50 W cm3 with 17–62%, of methane in the gas mixture, with pressures of 10–66 mbar and flow rates of 140700 ml min1. Methane, dioxygen, and dinitrogen consumptions as well as C2 hydrocarbons, carbon monoxide, and dihydrogen yields are analyzed hr gas chromatography. The distance of methane addition from the end of the discharge plays an important role in the composition and the concentration of the products obtained. This distance mainly determines the energy concentrated in the active species of the plasma when they react with methane. A kinetic mechanism jar the activation and decay of inethane and for the formation of C2 hydrocarbons and carbon monoxide is discussed based on the experimental results and kinetic data in the literature.  相似文献   

14.
Impregnated and co-precipitated, promoted and unpromoted, bulk and supported iron catalysts were prepared, characterized, and subjected to hydrogenation of CO2 at various pressures (1–2 MPa) and temperatures (573–673 K). Potassium, as an important promoter, enhanced the CO2 uptake and selectivity towards olefins and long-chain hydrocarbons. Al2O3, when added as a structural promoter during co-precipitation, increased CO2 conversion as well as selectivity to C2+ hydrocarbons. Among V, Cr, Mn and Zn promoters, Zn offered the highest selectivity to C2–C4 alkenes. The different episodes involved in the transformation of the catalyst before it reached steady-state were identified, on the co-precipitated catalyst. Using a biomass derived syngas (CO/CO2/H2), CO alone took part in hydrogenation. When enriched with H2, CO2 was also converted to hydrocarbons. The deactivation of impregnated Fe–K/Al2O3 catalyst was found to be due to carbon deposition, whereas that for the precipitated catalyst was due to increase in crystallinity of iron species. The suitability of SiO2, TiO2, Al2O3, HY and ion exchanged NaY as supports was examined for obtaining high activity and selectivity towards light olefins and C2+ hydrocarbons and found Al2O3 to be the best support. A comparative study with Co catalysts revealed the advantages of Fe catalysts for hydrocarbon production by F–T synthesis.  相似文献   

15.
The direct conversion of methane using a dielectric barrier discharge has been experimentally studied. Experiments with different values of flow rates and discharge voltages have been performed to investigate the effects on the conversion and reaction products both qualitatively and quantitatively. Experimental results indicate that the maximum conversion of methane has been 80% at an input flow rate of 5 ml/min and a discharge voltage of 4 kV. Experimental results also show that the optimum condition has occurred at a high discharge voltage and higher input flow rate. In terms of product distribution, a higher flow rate or shorter residence time can increase the selectivity for higher hydrocarbons. No hydrocarbon product was detected using the thermal method, except hydrogen and carbon. Increasing selectivity for ethane was found when Pt and Ru catalysts presented in the plasma reaction. Hydrogenation of acetylene in the catalyst surface could have been the reason for this phenomenon as the selectivity for acetylene in the products was decreasing.  相似文献   

16.
Pd-containing ionic liquid (IL) l-hexyl-3-methylimidazolium tetrafluoroborate (C6MIMBF4) immobilized on γ-Al2O3 (Pd-IL/γ-Al2O3) was prepared and characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and Brunauer-Emmett-Teller (BET) analysis. The influences of C6MIMBF4 loading and Pd on methane conversion to C2 hydrocarbons under cold plasma were investigated. FTIR and SEM analyses indicated that C6MIMBF4 had been successfully immobilized on γ-Al2O3 and the C6MIMBF4 showed excellent stability under cold plasma. The results of BET and methane conversion showed that with the increase in immobilization amount of C6MIMBF4 onto γ-Al2O3, the specific surface area and pore volume of IL/γ-Al2O3 decreased, while the selectivity and yield of C2 hydrocarbons increased. The selectivity of C2 hydrocarbons was 94.6% when the loading of C6MIMBF4 was 40%, and the percentage of C2H4 in C2 hydrocarbons was as high as 64% when using Pd-IL/γ-Al2O3 as a catalyst with no conventional thermal reduction treatment. Optical emission spectra (OES) from the cold plasma reactor during methane conversion were also studied. The results indicated that the intensity of the C2, CH, H, and C active species from methane and hydrogen decomposition increased when IL/γ-Al2O3 or Pd-IL/γ-Al2O3 was introduced into the plasma system. Based on the analyses of the gas product and OES spectra, it can be concluded that the surface catalyzed reactions between plasma and ionic liquid were very important for the reduction of Pd2+ and the formation of C2H4  相似文献   

17.
In this study, a technique of combining steam reforming with partial oxidation of CO2-containing natural gas in a gliding arc discharge plasma was investigated. The effects of several operating parameters including: hydrocarbons (HCs)/O2 feed molar ratio; input voltage; input frequency; and electrode gap distance; on reactant conversions, product selectivities and yields, and power consumptions were examined. The results showed an increase in either methane (CH4) conversion or synthesis gas yield with increasing input voltage and electrode gap distance, whereas the opposite trends were observed with increasing HCs/O2 feed molar ratio and input frequency. The optimum conditions were found at a HCs/O2 feed molar ratio of 2/1, an input voltage of 14.5?kV, an input frequency of 300?Hz, and an electrode gap distance of 6?mm, providing high CH4 and O2 conversions with high synthesis gas selectivity and relatively low power consumptions, as compared with the other processes (sole natural gas reforming, natural gas reforming with steam, and combined natural gas reforming with partial oxidation).  相似文献   

18.
The electrochemical reduction of CO2 with a Cu electrode in methanol was investigated with sodium hydroxide supporting salt. A divided H-type cell was employed; the supporting electrolytes were 80 mmol dm−3 sodium hydroxide in methanol (catholyte) and 300 mmol dm−3 potassium hydroxide in methanol (anolyte). The main products from CO2 were methane, ethylene, carbon monoxide, and formic acid. The maximum current efficiency for hydrocarbons (methane and ethylene) was 80.6%, at −4.0 V vs Ag/AgCl, saturated KCl. The ratio of current efficiency for methane/ethylene, r f(CH4)/r f(C2H4), was similar to those obtained in LiOH/methanol-based electrolyte and larger relative to those in methanol using KOH, RbOH, and CsOH supporting salts. In NaOH/methanol-based electrolyte, the efficiency of hydrogen formation, a competing reaction of CO2 reduction, was suppressed to below 4%. The electrochemical CO2 reduction to methane may be able to proceed efficiently in a hydrophilic environment near the electrode surface provided by sodium cation.  相似文献   

19.
In this paper, we compare the characteristics of methane activation by diverse plasma sources. The test conditions of reactant flow rate and composition are fixed for each plasma source to eliminate any possible misleading effects from varying test conditions. Among the diverse characteristics of each plasma source, we focus on the electron energy and degree of thermal activation in evaluating the cost-effectiveness of methane decomposition. The reaction is evaluated based on the selectivity of specific products, including H2, C2H6, and C2H2. Among the tested plasma sources, those that provide a somewhat thermal environment have a rather high degree of warmness, resulting in higher methane conversion and lower operational costs. As the non-thermal characteristics of the plasma sources become stronger, the selectivity of C2H6 increases. This reflects C2H6 formation from the direct collision of CH4 with high-energy electrons. On the other hand, as the degree of warmness increases, the selectivity of H2 and C2H2 increase. The results give an insight into possible tools for process control or selectivity control by varying the degree of warmness in the plasma source. The process optimization and cost reduction of methane activation should be based on this concept of selectivity control.  相似文献   

20.
Conversion of methane to higher hydrocarbon products, in particular, aromatic hydrocarbons has been achieved with good methane conversion and selectivity to aromatic products over heterogeneous catalysts using both high power pulsed microwave and rf energy. For example, under microwave irradiation > 85% conversion of methane and 60% selectivity to aromatics could be achieved. Cu, Ni, Fe and Al metallic materials are highly effective catalysts for the aromatization of methane via microwave heating; however, with a variety of supported catalysts the major products were C2 hydrocarbons and the conversion of methane was low. The use of sponge, wire and net forms of these metal catalysts was found advantageous in effective methane conversion. The reactions are considered to be free radical in nature and to proceed through an intermediate stage involving formation of acetylene. The influence of catalyst nature and configuration, as well as the microwave and rf irradiation parameters on the reaction efficiency and product selectivity has been examined in both batch and continuous flow conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号