首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Longevity remains as one of the central issues in the successful commercialization of polymer electrolyte membrane fuel cells (PEMFCs) and primarily hinges on the durability of the cathode. Incorporation of gold (Au) to platinum (Pt) is known to ameliorate both the electrocatalytic activity and stability of cathode in relation to pristine Pt-cathodes that are currently being used in PEMFCs. In this study, an accelerated stress test (AST) is conducted to simulate prolonged fuel-cell operating conditions by potential cycling the carbon-supported Pt-Au (Pt-Au/C) cathode. The loss in performance of PEMFC with Pt-Au/C cathode is found to be ~10% after 7000 accelerated potential-cycles as against ~60% for Pt/C cathode under similar conditions. These data are in conformity with the electrochemical surface-area values. PEMFC with Pt-Au/C cathode can withstand >10,000 potential cycles with very little effect on its performance. X-ray diffraction and transmission electron microscopy studies on the catalyst before and after AST suggest that incorporating Au with Pt helps mitigate aggregation of Pt particles during prolonged fuel-cell operations while X-ray photoelectron spectroscopy reflects that the metallic nature of Pt is retained in the Pt-Au catalyst during AST in comparison to Pt/C that shows a major portion of Pt to be present as oxidic platinum. Field-emission scanning electron microscopy conducted on the membrane electrode assembly before and after AST suggests that incorporating Au with Pt helps mitigating deformations in the catalyst layer.  相似文献   

2.
Alloy catalysts of Pt-Au/C with different Pt/Au ratios were prepared by the precipitation-deposition of metal chlorides and reduced by H(2) at 470 K. The surface composition of alloy crystallites deposited on the prepared catalysts was characterized by a technique of temperature-programmed reduction (TPR). In the characterization, O(2) was chemisorbed on the reduced catalysts and the chemisorbed O(2) was reduced by TPR. A low-temperature routine (LT) in the temperature range between 120 and 430 K was used for the TPR characterization. Monometallic catalysts of Au/C and Pt/C showed a reduction peak in the LT-TPR at reduction temperature (T(r))=145 and 240 K, respectively. T(r) from alloyed catalysts fell in the range and increased monotonously with their Pt/Au ratios. Interior Pt atoms in deposited alloy particles tended to segregate toward their surface during oxidation treatment at elevated temperatures.  相似文献   

3.
The structural and catalytic properties of SiO2- and TiO2 -supported Pt-Au bimetallic catalysts prepared by coimpregnation were compared with those of samples of similar composition synthesized from a Pt2Au4(C{triple bond}CBut)8 cluster precursor. The smallest metal particles were formed when the bimetallic cluster was used as a precursor and TiO2 as the support. FTIR data indicate that highly dispersed Au crystallites in these samples, presumably located in close proximity to Pt, are capable of linearly coordinating CO molecules with a characteristic vibration observed at 2111 cm(-1). The cluster-derived Pt2Au4/TiO2 samples were the only ones exhibiting low-temperature CO oxidation activity, indicating that both the high dispersion of Au and the nature of the support are important factors affecting the catalytic activity for this system.  相似文献   

4.
以炭黑及自制的壳聚糖-炭黑(CHI-C)复合材料为载体,采用溶胶负载法制备了Ptm^Au/C及Ptm^Au/CHI-C催化剂(^ 代表Au、Pt为分步负载,m代表Pt/Au原子比),通过紫外-可见吸收光谱、X射线衍射、透射电镜及X射线光电子能谱对催化剂进行了表征。利用循环伏安法和计时电流法分别测定了Pt-Au催化剂对甲醇电催化氧化反应的活性和稳定性,考查了Pt/Au原子比及CHI改性对电催化活性和稳定性的影响。结果表明,Pt1.0^Au/C具有最高的催化活性,炭黑中加入少量CHI能提高Pt1.0^Au/C催化剂的稳定性。  相似文献   

5.
Mesoporous Pt-Au binary alloys were electrochemically synthesized from lyotropic liquid crystals (LLCs) containing corresponding metal species. Two-dimensional exagonally ordered LLC templates were prepared on conductive substrates from diluted surfactant solutions including water, a nonionic surfactant, ethanol, and metal species by drop-coating. Electrochemical synthesis using such LLC templates enabled the preparation of ordered mesoporous Pt-Au binary alloys without phase segregation. The framework composition in the mesoporous Pt-Au alloy was controlled simply by changing the compositional ratios in the precursor solution. Mesoporous Pt-Au alloys with low Au content exhibited well-ordered 2D hexagonal mesostructures, reflecting those of the original templates. With increasing Au content, however, the mesostructural order gradually decreased, thereby reducing the electrochemically active surface area. Wide-angle X-ray diffraction profiles, X-ray photoelectron spectra, and elemental mapping showed that both Pt and Au were atomically distributed in the frameworks. The electrochemical stability of mesoporous Pt-Au alloys toward methanol oxidation was highly improved relative to that of nonporous Pt and mesoporous Pt films, suggesting that mesoporous Pt-Au alloy films are potentially applicable as electrocatalysts for direct methanol fuel cells. Also, mesoporous Pt-Au alloy electrodes showed a highly sensitive amperometric response for glucose molecules, which will be useful in next-generation enzyme-free glucose sensors.  相似文献   

6.
The burgeoning demand for clean and energy-efficient fuel cell system requires electrocatalysts to deliver greater activity and selectivity. Bimetallic catalysts have proven superior to single metal catalysts in this respect. This work reports the preparation, characterization, and electrocatalytic characteristics of a new bimetallic nanocatalyst. The catalyst, Pt-Au-graphene, was synthesized by electrodeposition of Pt-Au nanostructures on the surface of graphene sheets, and characterized by scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), X-ray powder diffraction (XRD), and voltammetry. The morphology and composition of the nanocatalyst can be easily controlled by adjusting the molar ratio between Pt and Au precursors. The electrocatalytic characteristics of the nanocatalysts for the oxygen reduction reaction (ORR) and the methanol oxidation reaction (MOR) were systematically investigated by cyclic voltammetry. The Pt-Au-graphene catalysts exhibits higher catalytic activity than Au-graphene and Pt-graphene catalysts for both the ORR and the MOR, and the highest activity is obtained at a Pt/Au molar ratio of 2:1. Moreover, graphene can significantly enhance the long-term stability of the nanocatalyst toward the MOR by effectively removing the accumulated carbonaceous species formed in the oxidation of methanol from the surface of the catalyst. Therefore, this work has demonstrated that a higher performance of ORR and the MOR could be realized at the Pt-Au-graphene electrocatalyst while Pt utilization also could be greatly diminished. This method may open a general approach for the morphology-controlled synthesis of bimetallic Pt-M nanocatalysts, which can be expected to have promising applications in fuel cells.  相似文献   

7.
An ab initio-based kinetic Monte Carlo algorithm was developed to simulate the direct decomposition of NO over Pt and different PtAu alloy surfaces. The algorithm was used to test the influence of the composition and the specific atomic surface structure of the alloy on the simulated activity and selectivity to form N2. The apparent activation barrier found for the simulation of lean NO decomposition over Pt(100) was 7.4 kcal/mol, which is lower than the experimental value of 11 kcal/mol that was determined over supported Pt nanoparticles. Differences are likely due to differences in the surface structure between the ideal (100) surface and supported Pt particles. The apparent reaction orders for lean NO decomposition over the Pt(100) substrate were calculated to be 0.9 and -0.5 for NO and O2, respectively. Oxygen acts to poison Pt. Simulations on the different Pt-Au(100) surface alloys indicate that the turnover frequency goes through a maximum as the Au composition in the surface is increased, and the maximum occurs near 44% Au. Turnover frequencies, however, are dictated by the actual arrangements of Pt and Au atoms in the surface rather than by their overall composition. Surfaces with similar compositions but different alloy arrangements can lead to very different activities. Surfaces composed of 50% Pt and 50% Au (Pt4 and Au4 surface ensembles) showed very little enhancement in the activity over that which was found over pure Pt. The Pt-Pt bridge sites required for NO adsorption and decomposition were still effectively poisoned by atomic oxygen. The well-dispersed Pt(50%)Au(50%) alloy, on the other hand, increased the TOF over that found for pure Pt by a factor of 2. The most active surface alloy was one in which the Pt was arranged into "+" ensembles surrounded by Au atoms. The overall composition of this surface is Pt(56.2%)Au(43.8%). The unique "+" ensembles maintain Pt bridge sites for NO to adsorb on but limit O2 as well as NO activation by eliminating next-nearest neighbor Pt-bridge sites. The repulsive interactions between two adatoms prevent them from sharing the same metal atoms. The decrease in the oxygen coverage leads to a greater number of vacant sites available for NO adsorption. This increases the NO coupling reaction and hence N2 formation. The inhibition of the rate of N2 formation by O2 is therefore suppressed. The coverage of atomic oxygen decreases from 53% on the Pt(100) surface down to 19% on the "+" ensemble surface. This increases the rate of N2 formation by a factor of 4.3 over that on pure Pt. The reaction kinetics over the "+" ensemble Pt(56.2%)Au(43.8%) surface indicate apparent reaction orders in NO and oxygen of 0.7 and 0.0, respectively. This suggests that oxygen does not poison the PtAu "+" alloy ensemble. The activity and selectivity of the PtAu ensembles significantly decrease for alloys that go beyond 60% Au. Higher coverages of Au shut down sites for NO adsorption and, in addition, weaken the NO and O bond strengths, which subsequently promotes desorption as well as NO oxidation. The computational approach identified herein can be used to more rapidly test different metal compositions and their explicit atomic arrangements for improved catalytic performance. This can be done "in silico" and thus provides a method that may aid high-throughput experimental efforts in the design of new materials. The synthesis and stability of the metal complexes suggested herein still ultimately need to be tested.  相似文献   

8.
A facile, previously unexplored, method to synthesize bimetallic Pt-Au nanowires (20nm diameter×120-170nm long) on mesoporous FSM-16 (2.7nm) was fabricated by co-impregnation of H(2)PtCl(6) with HAuCl(4) followed by evacuation at 300K and finally exposure to the CO/H(2)O gas mixture (60:5Torr) at 323K for 1.0h. On the other hand, spherical monometallic nanoparticles of pure Pt (7.0nm diameter) and Au (7-26nm diameter) were synthesized as well, by impregnation, at the same reaction conditions. The catalysts were characterized by in situ FTIR spectroscopy, UV-vis absorption spectroscopy, TEM, TPR and TPCOR. The catalytic activities toward the water-gas shift reaction (WGSR) were also examined under atmospheric pressure and at the margin of 323-373K. The optical absorption spectra showed a remarkable shift and broadening of Pt-Au surface Plasmon resonance band at 515nm apart from those of individual analogue emphasizing bimetallic formation. Results from in situ FTIR spectroscopy indicated that incorporation of Au assisted and stabilized the formation of carbonyl clusters of Pt-Au-CO (2084cm(-1)) and Pt-CO (1888cm(-1)) inside the host FSM-16. The Pt-Au carbonyl clusters built up at the moment of vanishing the linear carbonyl band of the charged Au (Au(+)-CO, 2186cm(-1)) along with a concomitant increase in the reduced gold (Au(0)-CO, 2124cm(-1)) species. TPR profiles showed that the H(2) consumed was higher for Pt/FSM-16 than for Pt-Au/FSM-16 verifying the facile reduction of Pt moieties after addition of Au. The CO adsorption peak maximum, in TPCOR, for Pt/FSM-16 occurred at higher temperature than that of Pt-Au/FSM-16, which exhibited higher amounts of CO(2) produced. The relative decrease in CO bindings on bimetallic surface was responsible for increasing the CO oxidation activity mainly through an association mechanism. Accordingly, the activity of Pt-Au/FSM-16 towards WGS showed a marked increase (8-23 times) compared with those of monometallics emphasizing the dependence of this reaction on the electronic defects of the nanowires. A straightforward reduction mechanism was deduced for Pt-Au alloy formation in view of the results obtained.  相似文献   

9.
Bimetallic Pd-Au and Pt-Au and monometallic Pd, Pt, and Au films were prepared by physical vapor deposition. The resulting surfaces were characterized by means of XPS, AFM, and CO adsorption from the liquid phase (CH2Cl2) monitored by ATR-IR spectroscopy. CO adsorption combined with ATR-IR proved to be a very sensitive method for probing the degree of interdiffusion occurring at the interfaces whose properties were altered by variation of the Pd and Pt film thickness from 0.2 to 2 nm. Because no CO adsorption was observed on Au, the evaporation of Pt-group metals on Au allowed us to study the effect of dilution on the adsorption properties of the surfaces. At equivalent Pd film thickness, the evaporation of Au reduced the amount of adsorbed CO and caused the formation of 2-fold bridging CO, which was almost absent in monometallic surfaces. Additionally, the average particle size on Pd-Au surfaces was smaller than that on monometallic Pd surfaces. The results indicate that a Pd/Au diffuse interface is formed that affects the Pd particle size even more drastically than the simple decrease in Pd film thickness in monometallic surfaces. Pt-Au surfaces were less sensitive to CO adsorption, indicating that the two metals do not mix to a significant extent. The difference in the interfacial behavior of Pd and Pt in the bimetallic gold films is traced to the largely different Pd-Au and Pt-Au miscibility gaps.  相似文献   

10.
The ethanol electro-oxidation reaction was evaluated using a polycrystalline Au substrate modified with two different amounts of Pt using the galvanic exchange methodology. FTIR results suggest that Pt deposits have a greater ability to break the C-C bond present in the ethanol molecule. However, under potentiostatic conditions both modified Au surfaces undergo faster deactivation in comparison with polycrystalline platinum as indicated by the chronoamperometric results. XPS results indicate the presence of two phases depending on the Pt content. These are: (i) Pt-Au alloy and (ii) segregated Pt. The structural and electronic properties of these phases were related to the differences observed in the catalytic activity.  相似文献   

11.
We performed density-functional theory analysis of nondissociative CO adsorption on 22 binary Au-alloy (Au(n)M(m)) clusters: n=0-3, m=0-3, and m+n=2 (dimers) or 3 (trimers), M=Cu/Ag/Pd/Pt. We report basis-set superposition error corrections to adsorption energies and include both internal energy of adsorption (DeltaU(ads)) and Gibbs free energy of adsorption (DeltaG(ads)) at standard conditions (298.15 K and 1 atm). We found onefold (atop) CO binding on all the clusters except Pd2 (twofold/bridged), Pt2 (twofold/bridged), and Pd3 (threefold). In agreement with the experimental results, we found that CO adsorption is thermodynamically favorable on pure Au/Cu clusters but not on pure Ag clusters and also observed the following adsorption affinity trend: Pd>Pt>Au>Cu>Ag. For alloy dimers we found the following patterns: Au2>M Au>M2 (M=Ag/Cu) and M2>M Au>Au2 (M=Pd/Pt). Alloying Ag/Cu dimers with (more reactive) Au enhanced adsorption and the opposite effect was observed for PdPt dimers. The Ag-Au, Cu-Au, and Pd-Au trimers followed the trends observed on dimers: Au3>M Au2>M2Au>M3 (M=Ag/Cu) and Pd3>Pd2Au>PdAu2>Au3. Interestingly, Pt-Au trimers reacted differently and alloying with Au systematically increased the adsorption affinity: PtAu2>Pt2Au>Pt3>Au3. A strikingly different behavior of Pt is also manifested by the triplet spin state and onefold (atop) binding in Pt3-CO which is in contradiction with the singlet spin state and threefold binding in Pd3-CO. We found a linear correlation between CO binding energy (BE) and elongation of the CO bond. For Ag-Au and Cu-Au clusters, the increase in CO BE (and elongation of the C-O bond which is probably due to the back donation) is accompanied by the decrease in the cluster-CO distance suggesting that the donation (from 5sigma highest occupied molecular orbital in CO to cluster lowest unoccupied molecular orbital) mechanism also contributes to the BE. For Pd-Au clusters, the cluster-CO distance (and CO bond length) increases with increase in the BE, suggesting that the donation mechanism may not be important for those clusters. No clear trend was observed for Pt-Au clusters.  相似文献   

12.
制备了不同Pt/Au原子比的活性炭负载Au-Pt催化剂(Au-Pt/C),研究了Au/Pt原子比对Au-Pt/C催化剂氧还原电催化性能和抗甲酸性能的影响.结果表明,与Au/C催化剂相比,Au-Pt/C具有更好的电催化性能.当Pt/Au原子比从0/50增加到2/48时,Au-Pt/C催化剂表现出良好的氧还原电催化性能和抗...  相似文献   

13.
《Chemical physics letters》1987,137(3):234-240
The results of an EHT study of the chemisorption of hydrogen on Pt, Au and mixed Pt-Au clusters (up to 19 atoms) are presented. On pure Pt clusters the adsorption sites have equal stability, while on pure Au the top site is the less favoured one. When Au atoms substitute Pt, a destabilization of the metal-H bond is observed, while the insertion of Pt into an Au cluster leads to bond stabilization.  相似文献   

14.
以SnO2为载体, 采用沉积沉淀法(DP)、共沉淀法(CP)和浸渍法(IM)制备了金负载Au/SnO2催化剂, 同时采用沉积沉淀法制备了M-Au/SnO2(M=Pd, Pt)双金属负载催化剂. 通过X射线衍射(XRD)、BET比表面积测定、透射电镜(TEM)和X射线光电子能谱(XPS)等技术对样品进行表征, 并测定其对CO的催化活性. 结果表明: 与CP法和IM 法相比, DP法制备的Au/SnO2-DP 催化剂, Au 颗粒(<5 nm)较小, 分布均匀; Au/SnO2-DP 中的Au 是以金属态Au0存在, 而Au/SnO2-CP 和Au/SnO2-IM 中, 金以Au0和Au3+的混合价态存在, 在Au/SnO2-DP和M-Au/SnO2中的Au、Pt、Pd和SnO2之间存在相互作用; Au/SnO2-DP 催化性能明显优于Au/SnO2-CP 和Au/SnO2-IM. Au与Pt 和Pd的双金属复合催化剂催化活性明显提高. 不同方法制备Au/SnO2催化活性的差别主要是由于Au颗粒大小和Au氧化态的不同而产生. 而M-Au/SnO2活性提高, 可能是由于Au与Pt 和Pd之间的相互作用.  相似文献   

15.
Customizing core-shell nanostructures is considered to be an efficient approach to improve the catalytic activity of metal nanoparticles. Various physiochemical and green methods have been developed for the synthesis of core-shell structures. In this study, a novel liquid-phase hydrogen reduction method was employed to form core-shell Pt@Au nanoparticles with intimate contact between the Pt and Au particles, without the use of any protective or structure-directing agents. The Pt@Au core-shell nanoparticles were prepared by depositing Au metal onto the Pt core; AuCl4− was reduced to Au(0) by H2 in the presence of Pt nanoparticles. The obtained Pt@Au core-shell structured nanoparticles were characterized by transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX), high-resolution TEM, fast Fourier transform, powder X-ray diffraction (PXRD), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), and H2-temperature programmed reduction (H2-TPR) analyses. The EDX mapping results for the nanoparticles, as obtained from their scanning transmission electron microscopy images in the high-angle annular dark-field mode, revealed a Pt core with Au particles grown on its surface. Fourier transform measurements were carried out on the high-resolution structure to characterize the Pt@Au nanoparticles. The lattice plane at the center of the nanoparticles corresponded to Pt, while the edge of the particles corresponded to Au. With an increase in the Au content, the intensity of the peak corresponding to Pt in the FTIR spectrum decreased slowly, indicating that the Pt nanoparticles were surrounded by Au nanoparticles, and thus confirming the core-shell structure of the nanoparticles. The XRD results showed that the peak corresponding to Pt shifted gradually toward the Au peak with an increase in the Au content, indicating that the Au particles grew on the Pt seeds; this trend was consistent with the FTIR results. Hence, it can be stated that the Pt@Au core-shell structure was successfully prepared using the liquid-phase hydrogen reduction method. The catalytic activity of the nanoparticles for the oxidation of toluene was evaluated using a fixed-bed reactor under atmospheric pressure. The XPS and H2-TPR results showed that the Pt1@Au1/Al2O3 catalyst had the best toluene oxidation activity owing to its lowest reduction temperature, lowest Au 4d & 4f and Pt 4d & 4f binding energies, and highest Au0/Auδ+ and Pt0/Pt2+ proportions. The Pt1@Au2Al2O3 catalyst showed high stability under dry and humid conditions. The good catalytic performance and high selectivity of Pt@Au/Al2O3 for toluene oxidation could be attributed to the high concentration of adsorbed oxygen species, good low-temperature reducibility, and strong interaction.  相似文献   

16.
Bimetallic nanoparticles(AmBn)usually exhibit rich catalytic chemistry and have drawn tremendous attention in heterogeneous catalysis.However,challenged by the huge configuration space,the understanding toward their composition and distribution of A/B element is known little at the atomic level,which hinders the rational synthesis.Herein,we develop an on-the-fly training strategy combing the machine learning model(SchNet)with the genetic algorithm(GA)search technique,which achieve the fast and accurate energy prediction of complex bimetallic clusters at the DFT level.Taking the 38-atom PtmAu38-mnanoparticle as example,the element distribution identification problem and the stability trend as a function of Pt/Au composition is quantitatively re solved.Specifically,results show that on the Pt-rich cluster Au atoms prefer to occupy the low-coordinated surface corner sites and form patch-like surface segregation patte rns,while for the Au-rich ones Pt atoms tend to site in the co re region and form the co re-shell(Pt@Au)configuration.The thermodynamically most stable PtmAu38-mcluster is Pt6 Au32,with all the core-region sites occupied by Pt,rationalized by the stronger Pt-Pt bond in comparison with Pt-Au and Au-Au bonds.This work exemplifies the potent application of rapid global sea rch enabled by machine learning in exploring the high-dimensional configuration space of bimetallic nanocatalysts.  相似文献   

17.
A wide range of light absorption and rapid electron–hole separation are desired for efficient photocatalysis. Herein, on the basis of a semiconductor‐like metal–organic framework (MOF), a Pt@MOF/Au catalyst with two types of metal–MOF interfaces integrates the surface plasmon resonance excitation of Au nanorods with a Pt‐MOF Schottky junction, which not only extends the light absorption of the MOF from the UV to the visible region but also greatly accelerates charge transfer. The spatial separation of Pt and Au particles by the MOF further steers the formation of charge flow and expedites the charge migration. As a result, the Pt@MOF/Au presents an exceptionally high photocatalytic H2 production rate by water splitting under visible light irradiation, far superior to Pt/MOF/Au, MOF/Au and other counterparts with similar Pt or Au contents, highlighting the important role of each component and the Pt location in the catalyst.  相似文献   

18.
以TiO2包覆的多壁碳纳米管(CNT@TiO2)为载体,Pt和Au为活性物质,采用沉积紫外光催化还原法制备出高活性的甲醇阳极电催化剂Pt-Au/CNT@TiO2,并采用X射线衍射、透射电镜和X射线光电子能谱对催化剂样品的物化特征进行表征.催化剂的抗毒性能用循环伏安和交流阻抗测试来表征.结果表明,粒径为2~3nm的Pt-...  相似文献   

19.
Carbon nanotubes have been proposed as advanced metal catalyst support for electrocatalysis. In this work, different carbon support materials including single-walled carbon nanotubes (SWNTs), multi-walled carbon nanotubes (MWNTs) and XC-72 carbon black, were compared in terms of their electrochemical properties using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The SWNTs is found to exhibit the highest accessible surface area in electrochemical reactions and the lowest charge transfer resistance at the SWNTs/electrolytes. These carbon materials are then loaded with varying amount of Pt by the electrodeposition technique to prepare carbon supported Pt catalysts. Electrochemical measurements of methanol oxidation reveal that the SWNTs supported Pt catalyst exhibits the highest mass activity (mA/mg-Pt). In comparison with Pt-XC-72 and Pt-MWNTs, the remarkably enhanced electrocatalytic activity of the Pt-SWNTs maybe attributed to a higher dispersion and utilization of the Pt particles, which are directly related to the electrochemical characteristics of SWNTs. The high concentration of oxygen-containing functional groups, high accessible surface area, low charge transfer resistance at the carbon/electrolyte interfaces can be important for the Pt dispersing and strong metal-support interaction in the Pt-SWNTs catalyst.  相似文献   

20.
Au/Si 载体负载单层Pt 催化剂的制备及其电催化性能的研究   总被引:1,自引:0,他引:1  
以Si 纳米粉为载体, 通过化学镀的方法在其表面部分沉积纳米Au 颗粒后, 再通过欠电位的方法在Au 颗粒表面沉积了单层及亚单层的Pt. 通过透射电子显微镜(TEM), 循环伏安(CV)等方法对所制备的Pt/Au/Si 催化剂进行了形貌及电化学性能的表征. 结果表明, 该单层Pt 覆盖的Au/Si 催化剂对于甲醇的质量电催化活性是商业E-TEK(Pt/C)的8 倍,相比于不同层数的Pt, 单层覆盖时Pt 的利用率最高, 该单层Pt 负载Au/Si 催化剂对于抑制CO 的中毒的性能也比商业E-TEK(Pt/C)有明显的提高.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号