首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Deprotonation of HP(bth)2 (1) affords the lithium phosphanide [(Et2O)2Li(bth)2P], (2) with both nitrogen atoms coordinated to the lithium atom while in the heterobimetallic complex [Li(bth)2P{Mn(CO)2Cp}2](n) (3) additionally the phosphorus atom micro-bridges two Mn(CO)2Cp residues.  相似文献   

2.
Herein, new complexes containing the [Ph2PCH2S(NtBu)3]? anion are presented, supplying three imido nitrogen atoms and a remote phosphorus atom as potential donor sites to main group and transition‐metal cations. The lithiated complex [(tmeda)Li{(NtBu)3SCH2PPh2}] ( 1 ) is an excellent starting material in transmetalation reactions. Herein, the transition‐metal complexes [M{(NtBu)3SCH2PPh2}2] (M=Mn ( 2 ), Ni ( 3 ), Zn ( 4 )) were synthesized and structurally characterized. Their isotypical molecules show SN2 chelation and no employment of the adjacent phosphorus atom in coordination. The third pendent imido group is always twisted toward the vacant face of the tetrahedrally coordinated sulfur atom.  相似文献   

3.
The cadmium(II) complex with the condensation product of salicylaldehyde and 3-(pyridine-2-yl)-5-(2-aminophenyl)-1H-1,2,4-triazole (H2L), Cd2(H2L)2(OAc)4 · 3EtOH, is synthesized. Its crystal structure is studied by X-ray diffraction analysis. In the centrosymmetric binuclear complex (Cd…Cd 3.938(1)Å), the Cd atoms are bonded by two tridentate bridging acetate anions. Two other acetate anions are terminal and coordinated by the monodentate mode. The coordination polyhedron of the Cd atom is a distorted octahedron. The triazole ligands are bonded to the cadmium cations through the N atoms of the pyridine cycle and triazole ring.  相似文献   

4.
Salts of 3d, 4d, and 5d metals in the presence of the ligands 1,1,1,-tris(diphenylphosphinomethyl)ethane (triphos) or tris (2-diphenylphosphinoethyl) amine (np3) react with white phosphorus P4 (or yellow As4) to produce several mononuclear sandwich and dinuclear triple-decker sandwich complexes, which contain the unprecedented cyclo-triphosphorus (or cyclo-triarsenic) unit acting as a trihapto-ligand. In these complexes the metal atoms are bonded to the there phosphorus atoms of the phosphane ligand and to the three atoms of the cyclo-P3 or cyclo-As3 unit. The complexes are diamagnetic or have μeff-values corresponding to one or two unpaired electrons. The cyclo-P3 ligand is coordinatively unsaturated as proved by the fact that the mononuclear sandwich compounds may form Lewis-base adducts with electron-acceptor fragments. Reaction of the complexes (np)3M (M = Ni, Pd) with white P4 leads to formation of diamagnetic compounds [(np3)M(η1-P4)], in which the metal atom is bonded to the three phosphorus atoms of the np3-ligand and in addition to one P atom of the intact P4 molecule, which behaves as a monohapto-ligand. This article contains a review of the syntheses and structures of these complexes as well as a unified, albeit qualitative, approach to their bonding and properties.  相似文献   

5.
Treatment of the five-coordinate ferrous dialkyl complex, (iPrPDI)Fe(CH2SiMe3)2 (iPrPDI = ((2,6-CHMe2)2C6H3N=CMe)2C5H3N), with [PhMe2NH][BPh4] in the presence of diethyl ether or tetrahydrofuran furnished the corresponding alkyl cations, where the donor ligand is coordinated in the basal plane of a distorted square pyramidal iron(II) alkyl cation. Performing the same reaction with the neutral Lewis acid, B(C6F5)3, induced methide abstraction from a silicon atom followed by rearrangement to afford the base free ferrous alkyl cation, [(iPrPDI)Fe(CH2SiMe2CH2SiMe3)][MeB(C6F5)3]. This complex is active for the polymerization of ethylene and yields polymers that are of higher molecular weight and narrower polydispersity than traditional methylalumoxane-activated catalysts.  相似文献   

6.
In the title compound, [CuCl(C6H6N4)(H2O)][Cu(C4H5NO4)Cl]·H2O, the CuII atom in the cation is coordinated by one Cl ion, two N atoms of the 2,2′‐biimidazole ligand and one aqua ligand. Within the anion, the CuII atom is bonded to one Cl ion, and one N and two O atoms of the imino­diacetate ligand. Neighbouring cations and anions are connected to each other by Cu·Cl semi‐coordination bonds of 2.830 (12) and 3.071 (12) Å, forming a Cu2Cl2 rectangular unit. The dinuclear units further link into a polymeric chain along the a axis through Cu·Oaqua interactions of 2.725 (3) Å. Including the long coordination bonds, the geometries around the Cu atoms in the cation and anion are square‐pyramidal and distorted octahedral, respectively.  相似文献   

7.
The reaction of (carbamoylmethyl)diphenylphosphine sulfide with AgNO3 yields the polymeric complex [Ag2{Ph2P(S)CH2C(O)NH2}2(NO3)2] n . Its structure was established by X-ray diffraction analysis. The coordination environments about both Ag+ cations are formed by five donor atoms, two of which are bonded to the metal atom substantially more weakly than the remaining three atoms. The compositions of the coordination polyhedra are different: ({AgSO′(C)O(N)O2(N′)} and {AgS′ SO(C)O2(N)}). The coordinated ligands differ in their functions: one ligand chelates the metal cation and its sulfur atom is additionally bonded to the second cation, while the second ligand acts as a bridge between the two different cations. The structure of the complex and the character of the interaction between the ligand and AgNO3 are substantially affected by the network of hydrogen bonds. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 4, pp. 838–845, April, 1997.  相似文献   

8.
Several tellurometalates of the general formula [MTe(7)](n)()(-) (n = 2, 3) have been isolated as salts of organic cations by reaction of suitable metal sources with polytelluride solutions in DMF. The [HgTe(7)](2)(-) anion has the same structure in both the NEt(4)(+) and the PPh(4)(+) salts except for a minor change in the ligand conformation. The [AgTe(7)](3)(-) and [HgTe(7)](2)(-) anions contain metal atoms coordinated in trigonal-planar fashion to eta(3)-Te(7)(4)(-) ligands. The central Te atom of an eta(3)-Te(7)(4)(-) ligand is coordinated to the metal atom and to two Te atoms in a "T"-shaped geometry consistent with a hypervalent 10 e(-) center. The planar [AuTe(7)](3)(-) anion may best be described as possessing a square-planar Au(III) atom coordinated to an eta(3)-Te(5)(4)(-) ligand and to an eta(1)-Te(2)(2)(-) ligand. The reaction of [NEt(4)](n)()[MTe(7)] (M = Hg, n = 2; M = Au, n = 3) with the activated acetylene dimethyl acetylenedicarboxylate (DMAD) has yielded the products [NEt(4)](n)()[M(Te(2)C(2)(COOCH(3))(2))(2)] (M = Hg, n = 2; M = Au, n = 1). The metal atoms are coordinated to two Te(COOCH(3))C=C(COOCH(3))Te(2)(-) ligands, for M = Hg in a distorted tetrahedral fashion and for M = Au in a square-planar fashion.  相似文献   

9.
双金属氰化物络合物 (DMC)是一类环氧化物聚合反应的高效催化剂 [1] ,已将其成功地用于高分子量低不饱和度聚醚多元醇的工业化生产 [2 ] .合适的有机配体是制备高活性 DMC催化剂的关键因素 .高活性 DMC催化剂是在有机配体存在下 ,由 Zn Cl2 与 K3[Co(CN) 6]在水中反应制得的 ,可表示为Zn3[Co(CN) 6]2 · x Zn Cl2 · y H2 O· z L,L 是有机配体 ,主要为醇类和醚类物质 [3~ 5] .Schuchardt[2 ]和Robert[3]等曾对 DMC催化环氧丙烷的聚合机理进行过研究 ,但有关催化活性中心的结构及环氧化物与催化剂的作用方式尚未见报道 .本文以…  相似文献   

10.
Complexes of Nickel(II) with Oxalic Amidines and Oxalic Amidinates with Additonal R2P‐Donor Groups Oxalamidines R1N=C(NHR2)‐C(=NHR2)=NR1, which bear additional donor atoms at two of the four N substituents ( H2A : R1 = mesityl, R2 = ‐(CH2)3‐PPh2; H2B : R1 = tolyl, R2 = ‐(CH2)3‐PMe2) form binuclear complexes with Nickel(II) in which very different coordination modes are realized. In the complex [ (A) Ni2Br2] (1) the two nickel atoms at each side of the bridge are in a square‐planar environment, coordinated by the two N donor atoms of the oxalic amidinate framework, a bromide and a Ph2P group. An analogous coordination has the organometallic compound [ (A) Ni2Me2] (2) . In contrast, the two nickel atoms in the compound {[( B )][Ni(acac)]2} (5) differ in their coordinative environment. At one side of the oxalic amidinate bridging ligand a (acac)Ni fragment is coordinated by the two N donor atoms resulting in a square‐planar environment. At the opposite side the (acac)Ni fragment is coordinated at the both N donor ligands of the bridging ligand as well as at the two PMe2 groups of the side chains resulting in an octahedral coordination for this nickel atom.  相似文献   

11.
The title compound crystallizes as the mono­hydrate, [Co(SeO3)(NH3)4]NO3·H2O. The crystallographic mirror symmetry coincides with the molecular symmetry; the mirror plane passes through the cation, anion and water mol­ecule. The CoN4O2 octahedron is distorted, with the selenito group acting as a bidentate ligand through two bridging O atoms to the cobalt. The coordinated Se—O distance is 1.742 (2) Å, whereas the uncoordinated Se—O distance is 1.646 (3) Å. A three‐dimensional hydrogen‐bonded network exists between [Co(SeO3)(NH3)4]NO3 and the water mol­ecule. The nitrate anion and water mol­ecule form open pores in the structure when hydrogen bonded to two neighboring [Co(SeO3)(NH3)4]+ cations. Selenium participates in two types of relatively close intermolecular interactions with neighboring charged species (Se?N1 and Se?O3), but does not participate in an interaction with a neighboring O2 atom, the nearest contact distance being 4.638 (3) Å.  相似文献   

12.
Abstract

Mn(II) cations in the crystals of trisaquobis(μ-thiophen-2-carboxylato-O,O′)(thiophen-2-carboxylato-O)manganese(II) monohydrate are bridged by oxygen atoms donated by bidentate carboxylic groups of two thiophen-2-carboxylate ligands. In addition, each Mn(II) ion is coordinated by an oxygen atom of a monodentate carboxylic group of this ligand and three oxygen atoms of water molecules. The coordination around the Mn(II) cation is octahedral. The bridging of the ligands results in molecular ribbons propagating in the c-direction of the crystal held together by C?H…O hydrogen bonds. The crystal structure of diaquobis(μ-furan-3-carboxylato-O,O′)di(μ-furan-3-carboxylato-O,O)(μ-aqua-O)manganese(II) consists of dinuclear structural units. In each molecule Mn(II) cations are O,O′ bridged by oxygen atoms of bidentate carboxylic groups of two furan-3-carboxylate ligands and have a water located between the Mn cations. The units are O,O′ bridged to Mn(II) ions located in adjacent units by bidentate oxygen atoms, forming molecular ribbons extending in the c-direction. Octahedral coordination around each Mn(II) ion is completed by two water molecules. The octahedra around two adjacent metal ions in the unit share a common apex - the bridging oxygen atom of the water molecule. The ribbons are held together by C?H…O hydrogen bonds between furan ring oxygen atoms and the carbon atoms of adjacent furan rings.  相似文献   

13.
Treating [Li(tmeda)]2[Zr(CH3)6] with aryl thiols, HSC6H4-4-R, in a 1:6 stoichiometry in diethyl ether affords excellent yields of [Li(tmeda)]2[Zr(SC6H4-4-R)6], where R = CH3 (1(2-)) or OCH3 (2(2-)) and tmeda denotes N,N,N',N'-tetramethylethylenediamine. These complexes are air-sensitive canary-yellow solids, soluble in hexane, diethyl ether, THF, and acetonitrile, that form yellow single crystals of [Li(tmeda)](2)1 (diethyl ether solution) or [Li(THF)3](2)2 (THF solution) from saturated solutions at -20 degrees C. Both complexes were characterized by X-ray crystallography and consist of a zirconium atom coordinated solely by the sulfur atoms of six aryl thiolate ligands in a nonoctahedral geometry. In each structure the lithium cation coordinates to the three sulfur atoms on the triangular faces of the S6 pseudotrigonal prism. These lithium-sulfur interactions appear to play a role in determining the coordination geometry about the metal center by orienting the sulfur lone pairs of electrons slightly out of the plane defined by the S3 triangular face and tilted away from the zirconium atoms. A likely consequence is the positioning of the sulfur lone pairs of electrons away from orthogonality with the zirconium-sulfur vector, and hence, they are poorly arranged to pi-interact with zirconium. Complex 1(2-) with a twist angle of ca. 9.18 degrees (trigonal prism, 0 degree; octahedron, 60 degrees) agrees with the interpretations of computational studies on d degree complexes, which suggest that a nearly trigonal prismatic geometry is favored when the interaction between metal and ligand is primarily through sigma-bonds. The intrinsically weak pi-donor thiolate ligand is probably converted to a primarily sigma-bonding system by the lithium-sulfur interaction. On the other hand complex 2(2-) with a twist angle of ca. 30.38 degrees is trigonally twisted to the midpoint of the trigonal prismatic-to-octahedral reaction coordinate. In complex 2(2-) the 4-OCH3 group is an electron donor by resonance effects that possibly may lead to the movement away from the expected trigonal prismatic geometry due to either pi-interactions or electrostatics repulsion.  相似文献   

14.
1,3,5-Diazaphosphorinanes and 1,5,3,7-diazadiphosphacyclooctanes form complexes with Pt(II), Pd(II), Cu(I), and Ag(I) salts. Platinum and palladium are coordinated through phosphorous atoms. In the case of 1,3-diphenyl-5-p-toluidenomethyl-1,3,5-diazaphosphorinane complex formation with platinum and palladium is accompanied by formation of a new polydentate ligand, p-tolylbis-(1,3-di-p-tolyl-1,3,5-diazaphosphorinane-5-yl)methylamine, where the metal is also bonded to phosphorus atoms.DeceasedA. E. Arbuzov Institute of Organic and Physical Chemistry, Kazan' Scientific Center, Russian Academy of Sciences, 420083 Kazan'. Translated from Izvestiya Akademii Nauk, Seriya Khimicheskaya, No. 2, pp. 335–342, February, 1992.  相似文献   

15.
The start of the development of catalysts for asymmetric hydrogenation was the concept of replacing the triphenylphosphane ligand of the Wilkinson catalyst with a chiral ligand. With the new catalysts, it should be possible to hydrogenate prochiral olefins. Knowles and his co‐workers were convinced that the phosphorus atom played a central role in this selectivity, as only chiral phosphorus ligands such as (R,R)‐DIPAMP, whose stereogenic center lies directly on the phosphorus atom, lead to high enantiomeric excesses when used as catalysts in asymmetric hydrogenation reactions. This hypothesis was disproven by the development of ligands with chiral carbon backbones. Although the exact mechanism of action of the phosphane ligands is not incontrovertibly determined to this day, they provide a simple entry to a large number of chiral compounds.  相似文献   

16.
报道了[Sc(NO3)3(OH2)3].(18-冠-6)的合成及其晶体结构.Sc(III)离子同三个双齿配体硝酸根与三个水分子氧配位,构成九配位的配合物.配位多面体是稍有扭曲的单帽四方反棱柱.配位水分子的六个氢原子分别与上下两层冠醚环上的氧原子生成氢键,形成多层夹心分子缔合物.  相似文献   

17.
Two new cadmium(II) complexes of the empirical formulae [Cd(SMDTC)3] · 2NO3 (1) and [Cd(SBDTC)2] · 2NO3 (2) have been synthesized and characterized by elemental analyses, UV–Vis, IR, 1H NMR and TGA techniques. In complex 1, the six coordination sites around cadmium are occupied by three neutral SMDTC molecules with N and S donor atoms from each ligand molecule, whereas in complex 2 the cadmium center is four coordinated with two relatively larger SBDTC ligands chelating with N and S donor atoms in the neutral thione form. In the solid state, thermal gravimetric analysis shows that both complexes are relatively volatile in nature and undergo facile thermal decomposition above 120 °C to form the metal sulfide followed by stepwise loss of ligand molecules. The crystal and molecular structure of complex 1 has been established by the X-ray diffraction method. The central cadmium(II) atom has an octahedral geometry with three five-membered chelate rings formed by SMDTC ligands. The crystal structure consists of parallel layers of cations and anions. The SMDTC molecules in cations are arranged with their N donor groups directed towards the anion layer in an alternating fashion and form hydrogen bonds with the O atoms of the anion.  相似文献   

18.
Ding E  Du B  Liu FC  Liu S  Meyers EA  Shore SG 《Inorganic chemistry》2005,44(13):4871-4878
9-BBN hydroborate complexes Ti{(mu-H)2BC8H14}3(THF)2 (1), Ti{(mu-H)2BC8H14}3(OEt2) (2), and [K(OEt2)4]-[Ti{(mu-H)2BC8H14}4] (4) were formed from the reaction of TiCl4 with K[H2BC8H14] in diethyl ether or THF. Ti{(mu-H)2BC8H14}3(PhNH2) (3) was isolated from the reaction of 2 with aniline in diethyl ether. In the formation of these complexes, Ti(IV) is reduced to Ti(III). The coordinated diethyl ether in 2 can be displaced by the stronger bases THF and aniline, to form 1 and 3, respectively. All of the compounds were characterized by single-crystal X-ray diffraction analysis. In complex 1, which contains two coordinated THF ligands, the titanium possesses a 17 electron configuration and there is no evidence for agostic interaction. Complexes 2 and 3 contain only one coordinated ether or aniline ligand, and the titanium possesses a 15 electron configuration. In these compounds, a C-H hydrogen on an alpha carbon on the BC8H14 unit of a 9-BBN hydroborate ligand forms an agostic interaction with the titanium. Criteria for assessing the existence of agostic interactions are discussed. As the potassium salt, the anion of complex 4 is more stable than the complexes 1-3. Organometallic anions of the type [ML4]- for titanium(III) are rare.  相似文献   

19.
The coordination chemistry of the water soluble phosphane oxide ligand tris[2‐isopropylimidazol‐4(5)‐yl]phosphane oxide, 4‐TIPOiPr, has been explored. A variety of 3d‐metal halide complexes have been prepared and the crystal structures of the solvates [(4‐TIPOiPr)ZnCl2]·MeOH·1/2dioxane ( 1 ·MeOH·1/2dioxane), [(4‐TIPOiPr)CoCl2]·H2O·2dioxane ( 2 ·H2O·2dioxane) and [(4‐TIPOiPr)2Ni(MeOH)2]Cl2·2MeOH ( 3 ·2MeOH) have been determined. All three structures show unprecedented coordination modes of the 4‐TIPOiPr ligand. Both zinc and cobalt complexes are coordinated in a bidentate κ2N fashion, whereas the nickel atom is coordinated by two ligands in a κN,O mode using one imidazolyl substituent and the P=O oxygen atom.  相似文献   

20.
The reaction of the bis(amino)cyclodiphosph(III)azane, cis-{(tBuNH)(2)(PNtBu)(2)}, with AlMe(3), AlClMe(2), AlCl(2)Me, and AlCl(3) is reported. The less Lewis acidic compound AlMe(3) forms the adduct cis-[(tBuNH)(2)(PNtBu){P.(AlMe(3))NtBu}] (1), in which the aluminum atom is exclusively coordinated to one phosphorus atom. At elevated temperatures AlMe(3) undergoes migratory exchange between the two phosphorus atoms, but no methane elimination is observed. By using the more Lewis acidic compound AlClMe(2) the P-coordinated compound cis-[(tBuNH)(2)(PNtBu){P(AlClMe(2))NtBu}] (2) can be obtained at low temperatures. Compound 2 rearranges irreversibly to a product in which the AlClMe(2) group is coordinated by one exo-cyclic nitrogen atom. A concomitant 1,2-H shift from this nitrogen atom onto the phosphorus atom is observed. The N-coordinated rearrangement product slowly decomposes via a P-N bond cleavage in solution. Reaction of the even more Lewis acidic compounds AlCl(2)Me and AlCl(3) finally led to stable adducts, cis-[(tBuNH)(PNtBu)(tBuNAlCl(2)Me){P(H)NtBu}] (3), and cis-[(tBuNH)(PNtBu)(tBuNAlCl(3)){P(H)NtBu}] (4), in which the aluminum atoms are N-coordinated by a tBuN=PH unit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号