首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The catalytic activity of Chromobacterium viscosum lipase (CV-lipase) was estimated across varying surfactant tail lengths (C-10-C-18) in water-in-oil (w/o) microemulsions of cationic surfactants containing four different hydroxyethyl-substituted head groups. An attempt to find a correlation, if any, between the activity of interfacially solubilized lipase and the varying surfactant tails was made for the first time in micellar enzymology. The second-order rate constant, k2, in lipase-catalyzed hydrolysis of p-nitrophenyl-n-hexanoate at pH 6.0 and 25 degrees C shows an improvement in enzyme activity (approximately 30-140%) across different head groups of amphiphiles with increasing tail lengths in varying solution compositions. Improvement of enzyme activity is prominent in ascending from C-10 to C-14/C-16, depending on the nature of polar head group. The hydrolytic activity of lipase in different surfactant (50 mM)/water/isooctane/n-hexanol with varying z= [alcohol]/[surfactant] (6.4 or 4.8) was amplified by 25-250% with increment in surfactant tail length in comparison with widely used cationic w/o microemulsions having solution compositions (z=16). As a notable outcome of this research, we found w/o microemulsions of 25 mM tetradecyltrimethylammonium bromide/water/isooctane/n-hexanol (z=8) producing the highest ever activity of lipase in any w/o microemulsions.  相似文献   

2.
Horseradish peroxidase (HRP) in cationic water-in-oil (W/O) microemulsions has always been ignored in reverse micellar enzymology, mainly because cationic surfactants are inhibitors of enzyme peroxidase. In the present study, for the first time, we have successfully introduced the cationic W/O microemulsion as an attractive host for efficient HRP activity. To this notion, much improved activity of HRP was observed in the W/O microemulsion of cetyltrimethylammonium bromide (CTAB) with an increase in n-hexanol concentration and W0 ([water]/[surfactant]), presumably due to the increased interfacial area of the microemulsions. In support of our above observation, six surfactants were synthesized with an increased headgroup size where the methyl groups of CTAB were subsequently replaced by the n-propyl and 2-hydroxyethyl groups, respectively, to prepare mono-, di-, and tripropylated/hydroxyethylated n-hexadecylammonium bromide. The peroxidase activity enhanced with headgroup size and also followed an overall trend similar to that found in the case of CTAB. Possibly, the reduced positive charge density at the augmented interfacial area by means of increase, either in headgroup size, cosurfactant concentration, and/or W0, is not capable of inactivating HRP. Also, the larger space at the interface may facilitate easier solubilization of the enzyme and increase the local concentration of enzyme and substrate, leading to the higher activity of HRP. The best activity was obtained with surfactant N-hexadecyl-N,N,N-tripropylammonium bromide, the highest ever found in any cationic W/O microemulsions, being almost 3 times higher than that found in water. Strikingly, this observed highest activity is comparable with that observed in an anionic bis(2-ethylhexyl)sulfosuccinate sodium salt (AOT)-based system, the best W/O microemulsions used for HRP.  相似文献   

3.
(1)H NMR chemical shift, spin-lattice relaxation time, spin-spin relaxation time, self-diffusion coefficient, and two-dimensional nuclear Overhauser enhancement (2D NOESY) measurements have been used to study the nonionic-ionic surfactant mixed micelles. Cetyl trimethyl ammonium bromide (CTAB) and sodium dodecyl sulfate (SDS) were used as the ionic surfactants and polyethylene glycol (23) lauryl ether (Brij-35) as the nonionic surfactant. The two systems are both with varying molar ratios of CTAB/Brij-35 (C/B) and SDS/Brij-35 (S/B) ranging from 0.5 to 2, respectively, at a constant concentration of 6 mM for Brij-35 in aqueous solutions. Results give information about the relative arrangement of the surfactant molecules in the mixed micelles. In the former system, the trimethyl groups attached to the polar heads of the CTAB molecules are located between the first oxy-ethylene groups next to the hydrophobic chains of Brij-35 molecules. These oxy-ethylene groups gradually move outward from the hydrophobic core of the mixed micelle with an increase in C/B in the mixed solution. In contrast to the case of the CTAB/Triton X-100 system, the long flexible hydrophilic poly oxy-ethylene chains, which are in the exterior part of the mixed micelles, remain coiled, but looser, surrounding the hydrophobic core. There is almost no variation in conformation of the hydrophilic chains of Brij-35 molecules in the mixed micelles of the SDS/Brij-35 system as the S/B increases. The hydrophobic chains of both CTAB and SDS are co-aggregated with Brij-35, respectively, in their mixed micellar cores.  相似文献   

4.
Herein, we report the effect of gold nanoparticles (GNPs) in enhancing lipase activity in reverse micelles of cetyltrimethylammonium bromide (CTAB)/water/isooctane/n‐hexanol. The size and concentration of the nanoparticles were varied and their specific roles were assessed in detail. An overall enhancement of activity was observed in the GNP‐doped CTAB reverse micelles. The improvement in activity becomes more prominent with increasing concentration and size of the GNPs (0–52 μM and ca. 3–30 nm, respectively). The observed highest lipase activity (k2=1070±12 cm3 g?1 s?1) in GNP‐doped CTAB reverse micelles ([GNP]: 52 μm, ca. 20 nm) is 2.5‐fold higher than in CTAB reverse micelles without GNPs. Improvement in the lipase activity is only specific to the GNP‐doped reverse micellar media, whereas GNP deactivates and structurally deforms the enzyme in aqueous media. The reason for this activation is probably due to the formation of larger‐sized reverse micelles in which the GNP acts as a polar core and the surfactants aggregate around the nanoparticle (‘GNP pool’) instead of only water. Lipase at the augmented interface of the GNP‐doped reverse micelle showed improved activity because of enhancement in both the substrate and enzyme concentrations and increased flexibility in the lipase conformation. The extent of the activation is greater in the case of the larger‐sized GNPs. A correlation has been established between the activity of lipase and its secondary structure by using circular dichroism and FTIR spectroscopic analysis. The generalized influence of GNP is verified in the reverse micelles of another surfactant, namely, cetyltripropylammonium bromide (CTPAB). TEM, dynamic light scattering (DLS), and UV/Vis spectroscopic analysis were utilized to characterize the GNPs and the organized aggregates. For the first time, CTAB‐based reverse micelles have been found to be an excellent host for lipase simply by doping with appropriately sized GNPs.  相似文献   

5.
The primary objective of the present article is to understand how the geometric constraints at the surfactant head affect the lipase activity in the reverse micellar interface. To resolve this issue, surfactants were designed and synthesized, and activity was measured in /water/isooctane/n-hexanol reverse micellar systems at z ([alcohol]/[surfactant])=5.6, pH 6.0 (20 mM phosphate), 25 degrees C across a varying range of W0 ([water]/[surfactant]) using p-nitrophenylalkanoates as the substrate. It was observed that lipase activity increases from surfactants to with the increment in surface area per molecule (Amin) because of the substitution by the bulky tert-butyl group at the polar head. However, the activity was found to be similar for despite an enhancement in the hydrophilic moieties at the interface. This unchanged lipase activity is presumably due to the comparable surface area of to originating from the rigidity at the surfactant head. Noticeably, the enzyme activity improved from with the simultaneous increment of both the hydroxyl group and the flexibility of the headgroup whereas that for increased exclusively with the flexibility of the headgroup. The common parameter in both groups of surfactants and is the flexibility of the headgroup, which possibly enhance Amin and consequently the lipase activity. Thus, the geometric constraints at the surfactant headgroup play a crucial role in modulating the lipase activity profile probably because of the variation in interfacial area.  相似文献   

6.
Interfacial concentrations and/or space: which one is the predominant factor in regulating lipase activity at the water-oil interface? This work is an endeavor toward probing the relationship between lipase activity and interfacial concentrations in cationic water-in-oil (W/O) microemulsions through quantitative study by a chemical trapping method. The interfacial concentrations of water ([H2Oi]), bromide ([Bri-]), and n-hexanol ([HexOHi]) were estimated in the W/O microemulsions of six surfactants with varying headgroup architecture and hydrophilicity across a wide W0 ([H2O]/[surfactant]) range. The surfactants were prepared by the replacement of methyl groups of cetyltrimethylammonium bromide (1) by n-propyl (2-4), one hydroxyethyl (5), and one methoxyethyl (6) group. The estimated [H2Oi] was found not to change much (30.0-36.7 M) with the variation in headgroup hydrophilicity or size from 1-5. However, [Bri-] was found to increase with a decrease in the degree of dissociation (alpha), being higher for 1 and 5 (2.4-3.3 M) and relatively lower (0.9-1.9 M) for others depending on W0. Interestingly, [H2Oi] was found to be little higher (41.5-42.2 M) in the case of 6. The present study elucidates the importance of interfacial water and counterion concentrations in modulating the lipase activity in reverse micelles. In our previous report, the lipase activity was found to increase from 1-4 and in 6, whereas that observed in 5 was comparable with 1, being largely regulated by the surfactant head group size (Das, D.; Roy, S.; Mitra, R. N.; Dasgupta, A.; Das, P. K. Chem.-Eur. J. 2005, 11, 4881). The only other parameter that increased distinctly with lipase activity is the headgroup size, not [H2Oi]. Thus, the role of [H2Oi] in comparison to the surfactant's headgroup size is not found to be that significant. Moreover, the lower [Bri-] in 2-4 and 6 perhaps enhances the probability of enzyme and substrate localization at the interface, leading to higher lipase activity.  相似文献   

7.
A new cmc determination method based on a NIR spectroscopic technique has been developed. Comparing to other cmc determination methods, this NIR method is universal, sensitive, nonintrusive and nonadditive; namely, it can be used for the direct measurements of cmc of normal micelles as well as reversed micelles, without adding any dye or fluorescent probe. cmc values of various surfactants including CTAB, SDS, Triton X-100, Brij-35, Brij-700, Tween-20, SB-12, SB3-10 determined by this method agree very well with those determined by other methods. Additionally, the method can be used for the sensitive and direct determination of cmc values of various nonionic surfactants in room-temperature ionic liquids including [BMIm](+)[PF(6)](-) and [EMIm](+)[Tf(2)N](-). The preliminary results presented here clearly demonstrate that it is possible to use the NIR technique not only to characterize aggregation of surfactants in RTILs but also to determine kinetics and to identify products of reactions in RTILs as well as in microreactors provided by micelles in the RTILs.  相似文献   

8.
姚传义  吴金川 《应用化学》1998,15(3):106-108
二-(2-乙基己基聚氧化烯烃)琥珀酸双酯磺酸钠的表面活性及应用姚传义吴金川何志敏*(天津大学化学工程研究所天津300072)关键词二-(2-乙基己基聚氧化烯烃)琥珀酸双酯磺酸钠,表面活性,反胶团酶反应,橄榄油水解1997-09-19收稿,1997-1...  相似文献   

9.
反胶束是两亲分子在非极性溶剂中形成的一种有序组合体,在医药、化工、采油、胶束催化及酶催化等领域中有重要应用.与胶束溶液相比,人们对反胶束的形成与结构的了解至今仍不充分.特别是对于由混合表面活性剂形成的反胶束的研究几乎无人涉及.本文采用动态光散射、电导及荧光光谱等手段对阴离子表面活性剂AOT与非离子表面活性剂形成的混合反胶束进行了研究,旨在探讨利用表面活性剂的复配来调节和控制反胶束的结构和性能.亚实验部分二异辛基磺化琉璃酸钠(AOT,Sigma公司);Brij30为含4个氧乙烯基(EO基)的十二碳醇(AcrosOrgani…  相似文献   

10.
AEOT反胶束中脂肪酶的催化活性   总被引:5,自引:0,他引:5  
反胶束已广泛应用于膜模拟化学和蛋白质的液 液萃取中[1~ 3] ,反胶束酶反应作为实现有机相酶催化的方法之一 ,具有许多独特的优点 ,反胶束独特的结构特征使表面活性剂分子组成的膜将油水相隔开 ,从而有利于保持酶的活性和稳定性。酶在反胶束的微水环境中比在水溶液中更接近天然的细胞内环境 ,在这里酶和底物分子均可得到有效的分散 ,接触几率大大提高 ,因而催化效率也得到很大提高。反胶束可以适用于各种类型的 (亲水的、疏水的和双亲的 )底物[4] ,已逐步形成“胶束酶学”的研究分支 ,研究胶束酶学的Martinek等[3] 曾预言 :反胶束体系有可…  相似文献   

11.
本文系统研究了四-(4-苯基磺酸基)卟啉(TPPS)在由聚乙二醇辛基苯基醚(TX-100)构筑的反相微乳液内相中的聚集行为。通过改变反相微乳水相液滴的pH值、粒径及TPPS的浓度,发现在反相乳液内相中TPPS的表观pKa明显小于在水溶液中的pKa(4.9),并且,TPPS的表观pKa随着水相液滴粒径的减小而降低;当水相液滴的pH > pKa时,TPPS以去质子化单体H2TPPS4-形式存在,而当pH < pKa时,TPPS以质子化单体H4TPPS2-和J-聚集两种形式存在,并且TPPS浓度的增大,促进了H4TPPS2-向J-聚集转变;在pH值不变的条件下,随着水相液滴粒径的增大,TPPS的存在状态由H2TPPS4-向H4TPPS2-转变,并形成J-聚集。  相似文献   

12.
Phase behaviors of AOT/heptane (Hp)/formamide (FA), ethylene glycol (EG), propylene glycol (PG), triethylene glycol (TEG) and glycerol (GLY) have been investigated in the absence and presence of a nonionic surfactant, polyoxyethylene(2) cetyl ether (Brij-52) at 303 K. The phase characteristics of (AOT+Brij-52)/Hp/(EG or PG or TEG) have been found to be different from that of AOT/Hp/FA systems in respect of both the area of monophasic domain and the appearance of other mesophases. The area of monophasic domain of (AOT+Brij-52)/Hp/EG depends on the content of Brij-52 (X Brij-52) and shows a maximum at X Brij-52=0.4. A negligible effect on the area of the monophasic domain has been shown by more hydrophobic surfactants, polyoxyethylene(2) stearyl ether (Brij-72) and polyoxyethylene(2) oleyl ether (Brij-92). The effect of oils (dodecane and hexadecane) on the mixed systems stabilized by (AOT+Brij-52) in EG has been investigated. The area of monophasic domain has been found to be dependent on the type of nonaqueous solvents and follows the order GLY>EG>PG>TG. A systematic investigation on the measurement of phase volumes of mixed surfactant systems [AOT+nonionic surfactant(s)] stabilized in oils of different chain lengths (heptane, dodecane and hexadecane) and polar solvent (EG) has been carried out at different compositions of the ingredients to identify the phase transitions of these systems as a function of X Brij-52. The threshold point of phase transition (both W I→W IV and W IV→W II transitions) has been found to be a function of the configuration of added nonionic surfactant, nature of the polar solvent and oil. The conversion of the initial oil/EG droplets into EG/oil droplets with increasing X nonionic has been facilitated for hydrophobic surfactants polyoxyethylene(4) lauryl ether (Brij-30), Brij-52, and Brij-72 in comparison to the hydrophilic surfactants polyoxyethylene(10) cetyl ether (Brij-56) and polyoxyethylene(20) cetyl ether (Brij-58).  相似文献   

13.
The conductivity of AOT/IPM/water reverse micellar systems as a function of temperature, has been found to be non-percolating at three different concentrations (100, 175 and 250 mM), while the addition of nonionic surfactants [polyoxyethylene(10) cetyl ether (Brij-56) and polyoxyethylene(20) cetyl ether (Brij-58)] to these systems exhibits temperature-induced percolation in conductance in non-percolating AOT/isopropyl myristate (IPM)/water system at constant compositions (i.e., at fixed total surfactant concentration, omega and X(nonionic)). The influence of total surfactant concentration (micellar concentration) on the temperature-induced percolation behaviors of these systems has been investigated. The effect of Brij-58 is more pronounced than that of Brij-56 in inducing percolation. The threshold percolation temperature, Tp has been determined for these systems in presence of additives of different molecular structures, physical parameters and/or interfacial properties. The additives have shown both assisting and resisting effects on the percolation threshold. The additives, bile salt (sodium cholate), urea, formamide, cholesteryl acetate, cholesteryl benzoate, toluene, a triblock copolymer [(EO)13(PO)30(EO)13, Pluronic, PL64], polybutadiene, sucrose esters (sucrose dodecanoates, L-1695 and sucrose monostearate S-1670), formamide distinctively fall in the former category, whereas sodium chloride, cholesteryl palmitate, crown ether, ethylene glycol constitute the latter for both systems. Sucrose dodecanoates (L-595) had almost marginal effect on the process. The observed behavior of these additives on the percolation phenomenon has been explained in terms of critical packing parameter and/or other factors, which influence the texture of the interface and solution properties of the mixed reverse micellar systems. The activation energy, Ep for the percolation process has been evaluated. Ep values for the AOT/Brij-56 systems have been found to be lower than those of AOT/Brij-58 systems. The concentration of additives influence the parameters Tp and Ep for both systems. A preliminary report for the first time on the percolation phenomenon in mixed reverse micelles in presence of additives has been suggested on the basis of these parameters (Tp and Ep).  相似文献   

14.
The solubility of Ls-54 surfactant in supercritical CO(2) was determined. It was found that the surfactant was highly soluble in SC CO(2) and the water-in-CO(2) microemulsions could be formed, despite it being a non-fluorous and non-siloxane nonionic surfactant. The main reasons for the high solubility and formation of the microemulsions may be that the surfactant has four CO(2)-philic groups (propylene oxide) and five hydrophilic groups (ethylene oxide) and its molecular weight are relatively low. The results of this work provide useful information for designing CO(2)-soluble non-fluorous and non-siloxane surfactants. The phase behavior of the CO(2)/Ls-54/H(2)O system, solvatochromic probe study, and the UV spectrum of lysozyme proved the existence of water domains in the SC CO(2) microemulsions. The method of synchrotron radiation small-angle X-ray scattering was used to obtain the structural information on the Ls-54 based water-in-CO(2) reverse micelles. By using the Guinier plot (ln I(q) versus q (2)) on the data sets in a defined small q range (0.022-0.040 A(-1)), the radii of the reverse micelles were obtained at different pressures and molar ratio of water to surfactant, W(0), which were in the range of 20.4-25.2 A.  相似文献   

15.
Isothermal phase diagrams of the system cetyltrimethylammonium bromide (CTAB)/n‐butanol/n‐octane/water were constructed, and the effect of the oil (n‐octane) contents on the microemulsions was studied at 40 °C. We determined the microemulsion structures of two systems, CTAB/n‐butanol/10% n‐octane/water and sodium dodecyl sulfonate (As)/n‐butanol/20% styrene/water, by conductivity measurements to investigate the polymerization of acrylamide and styrene in the two microemulsion systems. The polymerization kinetics of the water‐soluble monomer acrylamide in CTAB micelles and the different CTAB/n‐butanol/10% n‐octane/water microemulsion media [water‐in‐oil (W/O), bicontinuous (BC), and oil‐in‐water (O/W)] were studied with water‐soluble sodium bisulfite as the initiator. The maximum polymerization rate in CTAB micelles was found at the second critical micelle concentration. A mechanism of polyacrylamide formation and growth was proposed. A connection between the structures of the microemulsions and the polymerization rates was observed; the maximum polymerization rate occurred at two transition points, from W/O to BC and from BC to O/W, and the polyacrylamide molecular weights, which depended on the structures of the microemulsions, were also found. A square‐root dependence of the polymerization rates on the initiator concentrations was obtained in CTAB micelles and O/W microemulsion media. The polymerization of the oil‐soluble monomer styrene in different As/n‐butanol/20% styrene/water microemulsion media (W/O, BC, and O/W) was also investigated with different initiators: water‐soluble potassium persulfate and oil‐soluble azobisisobutyronitrile. A similar connection between the structures of the microemulsions and the conversions of styrene in CTAB/n‐butanol/10% n‐octane/water for the polymerization of acrylamide was observed again. The structures of the microemulsions had an important role in the molecular weights and sizes of polystyrene. The polystyrene particles were 10–20 nm in diameter in BC microemulsion media and 30–60 nm in diameter in O/W microemulsion media according to transmission electron microscopy. We determined the solubilization site of styrene in O/W microemulsion drops by 1H NMR spectra to analyze the results of the microemulsion polymerization of styrene. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3320–3334, 2001  相似文献   

16.
The dynamics of the excited-state intramolecular proton-transfer (ESIPT) reaction of 2-(2'-furyl)-3-hydroxychromone (FHC) was studied in micelles by time-resolved fluorescence. The proton-transfer dynamics of FHC was found to be sensitive to the hydration and charge of the micelles, demonstrated through a decrease of the ESIPT rate constant (k(PT)) in the sequence cationic → nonionic → anionic micelles. A remarkably slow ESIPT with a time constant (τ(PT)) of ~100 ps was observed in the anionic sodium dodecyl sulfate and sodium tetradecyl sulfate micelles, whereas it was quite fast (τ(PT) ≈ 15 ps) in the cationic cetyltrimethylammonium bromide and tetradecyltrimethylammonium bromide micelles. In the nonionic micelles of Brij-78, Brij-58, Tween-80, and Tween-20, ESIPT occurred with time constants (τ(PT) ≈ 35-65 ps) intermediate between those of the cationic and anionic micelles. The slower ESIPT dynamics in the anionic micelles than the cationic micelles is attributed to a relatively stronger hydration of the negatively charged headgroups of the former than the positively charged headgroups of the latter, which significantly weakens the intramolecular hydrogen bond of FHC in the Stern layer of the anionic micelles compared to the latter. In addition, electrostatic attraction between the positively charged -N(CH(3))(3)(+) headgroups and the negatively charged 4-carbonyl moiety of FHC effectively screens the intramolecular hydrogen bond from the perturbation of water molecules in the micelle-water interface of the cationic micelles, whereas in the anionic micelles, this screening of the intramolecular hydrogen bond is much less efficient due to an electrostatic repulsion between its negatively charged -OSO(3)(-) headgroups and the 4-carbonyl moiety. As for the nonionic micelles, a moderate level of hydration, and the absence of any charged headgroups, causes an ESIPT dynamics faster than that of the anionic but slower than that of the cationic micelles. Furthermore, the ESIPT rate decreased with a decrease of the hydrophobic chain length of the surfactants due to the stronger hydration of the micelles of shorter chain surfactants than those of longer chain surfactants, arising from a less compact packing of the former surfactants compared to the latter surfactants.  相似文献   

17.
The activity and stability of Chromobacterium viscosum lipase (glycerolester hydrolase, EC 3.1.1.3)-catalyzed olive oil hydrolysis in sodium bis (2-ethyl-1-hexyl)sulfosuccinate (AOT)/isooctane reverse micelles is increased appreciably when low molecular weight polyethylene glycol (PEG 400) is added to the reverse micelles. To understand the effect of PEG 400 on the phase behavior of the reverse micellar system, the phase diagram of AOT/PEG 400/water/isooctane system was studied. The influences of relevant parameters on the catalytic activity in AOT/PEG 400 reverse micelles were investigated and compared with the results in the simple AOT reverse micelles. In the presence of PEG 400, the linear decreasing trend of the lipase activity with AOT concentration, which is observed in the simple AOT reverse micelles, disappeared. Enzyme entrapped in AOT/PEG reverse micelles was very stable, retaining>75% of its initial activity after 60 d, whereas the half-life in simple AOT reverse micelles was 38 d. The kinetics parameter maximum velocity (V max)exhibiting the temperature dependence and the activation energy obtained by Arrhenius plot was suppressed significantly by the addition of PEG 400.  相似文献   

18.
Solubilization and conductivity studies are carried out with AOT/Brijs (Brij-30, Brij-35, Brij-52, Brij-56, Brij-58, Brij-72, Brij-76, Brij-78)/isooctane/water mixed reverse micellar systems. Replacement of AOT molecules with large head group Brij molecules (Brij-30, Brij-35, Brij-56, Brij-58, Brij-76, Brij-78) decreases the solubilization capacity, whereas those with smaller polar head groups (Brij-52 and Brij-72) increases it. The former blends assist the conductance percolation whereas the latter retard it. An attempt has been taken to obtain more insight on the interfacial composition of the mixed interface with the help of spectrophotometric studies using 7-hydroxycoumarin as the fluorophore. The results obtained from the solubilization and conductometric studies have been correlated with those obtained from the spectroscopic studies.  相似文献   

19.
NMR self-diffusion coefficient measurements have been used to study the properties of polyethylene glycol (23) lauryl ether (Brij-35) with cetyltrimethylammonium bromide (CTAB) in the mixed aqueous solutions with different mole fractions of CTAB. By fitting the self-diffusion coefficients to the two-state exchange model, the critical micelle concentrations of the two solutes in the mixed solutions (cmc*1 and cmc*2) were obtained. The critical mixed micelle concentrations (cmc*) were then evaluated by the sum of cmc*1 and cmc*2, which are in good agreement with the results measured by the surface tension method. The cmc* values are lower than those of the ideal case of mixing, which indicates that the behavior of the CTAB/Brij-35 system is nonideal. Moderate interactions between CTAB and Brij-35 in their mixtures can be deduced from the interaction parameters (betaM) based on the cmc* obtained by the NMR self-diffusion method. The compositions (x1) of the mixed micelles at different total surfactant concentrations were also evaluated. By using these results, a possible mechanism of mixed micellar formation and a picture of the formation of nonsimultaneous CTAB/Brij-35 binary mixed micelle were proposed. In contrast to the case of CTAB/TX-100 system, Brij-35 molecules have a tendency to form micelles first at any mole fraction of CTAB. The mixed micellar self-diffusion coefficients (Dm) increase slightly at lower CTAB molar ratios, and then speed up with increasing CTAB mole fraction.  相似文献   

20.
Controlled release of cephanone from hexadecyltrimethylammonium bromide (CTAB) micelles and CTAB/n-C5H11OH/H2O microemulsions was studied. The results showed that the release rate of cephanone was reduced in CTAB micelles and CTAB/n-C5H11OH/H2O microemulsions, because of the solubilization of cephanone in micelles and microemulsions. The release of cephanone from CTAB micelles and CTAB/n-C5H11OH/H2O microemulsions was characterized by Fickian diffusion and non-Fickian diffusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号