首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
《Current Applied Physics》2009,9(5):1005-1008
The counter electrodes based on NiP-plated glass and titanium plate were prepared. The performance characteristics of the dye-sensitized solar cells with platinized NiP-plated glass electrode (Pt/NiP electrode) and platinized titanium plate electrode (Pt/TP electrode) were discussed. Pt/NiP electrode and Pt/TP electrode showed the same catalytic activity for triiodide reduction compared with platinized fluorine-doped tin oxide conducting glass electrode (Pt/FTO electrode). However, Pt/NiP electrode and Pt/TP electrode have the advantage over Pt/FTO electrode in reducing the sheet resistance and increasing light reflectivity, which resulted in improving the photovoltaic performance of dye-sensitized solar cells effectively. Compared with the cell using Pt/FTO electrode, the incident photon conversion efficiency of dye-sensitized solar cells with Pt/NiP electrode and Pt/TP electrode was increased by 20% and 5%, respectively, the overall energy efficiency of dye-sensitized solar cells with Pt/NiP electrode and Pt/TP electrode was increased by 32% and 27%, respectively.  相似文献   

2.
《Current Applied Physics》2010,10(3):813-816
Ag films were deposited on Al-doped ZnO (AZO) films and coated with AZO to fabricate AZO/Ag/AZO multilayer films by DC magnetron sputtering on glass substrates without heating of glass substrates. The best multilayer films have low sheet resistance of 19.8 Ω/Sq and average transmittance values of 61% in visible region. It was found that the highest figure of merit (FTC) is 6.9 × 10−4 Ω−1. For the dye-sensitized solar cell (DSSC) application, the multilayer films were used as transparent conductive electrode (multilayer films/ZnO + Eosin-Y/LiI + I2/Pt/FTO). The best DSSC based on the multilayer films showed that open circuit voltage (Voc) of 0.47 V, short circuit current density (Jsc) of 2.24 mA/cm2, fill factor (FF) of 0.58 and incident photon-to-current conversion efficiency (η) of 0.61%. It was shown that the AZO/Ag/AZO multilayer films have potential for application in DSSC.  相似文献   

3.
Polyethylene-terephthalate (PET) foils and glass slides coated with thin conductive layers were used as substrates for TiO2 or ZnO based photoactive electrodes of dye-sensitized solar cells (DSSC) with organo-metallic Ru-dye, standard iodine electrolyte and Pt coated FTO/glass counterelectrode (CE). Different compositions of nanoparticle oxides in forms of alcohol pastes as well as the CE paste were applied onto the substrates by screen printing or by doctor blade techniques. Photocurrents and IV loading characteristics were measured depending on the solar cell structure and preparation, including the oxide composition, electrode conductivity and the dye type. The influence of thin TiO2 blocking layer prepared by sol–gel technique is also discussed.  相似文献   

4.
In this work we report on the formation of lumpy Pd and Pt nanoparticles on fluorine-doped tin oxide/glass (FTO/glass) substrate by a laser-based approach. In general, complex-surface morphology metal nanoparticles can be used in several technological applications exploiting the peculiarities of their physical properties as modulated by nanoscale morphology. For example plasmonic metal nanoparticles presenting a lumpy morphology (i.e. larger particles coated on the surface by smaller particles) can be used in plasmonic solar cell devices providing broadband scattering enhancement over the smooth nanoparticles leading, so, to the increase of the device efficiency. However, the use of plasmonic lumpy nanoparticles remains largely unexplored due to the lack of simply, versatile, low-cost and high-throughput methods for the controllable production of such nanostructures.Starting from these considerations, we report on the observation that nanoscale-thick Pd and Pt films (17.6 and 27.9 nm, 12.1 and 19.5 nm, respectively) deposited on FTO/glass surface irradiated by nanosecond pulsed laser at fluences E in the 0.5–1.5 J/cm2 range, produce Pd and Pt lumpy nanoparticles on the FTO surface. In addition, using scanning electron microscopy analyses, we report on the observation that starting from each metal film of fixed thickness h, the fraction F of lumpy nanoparticles increases with the laser fluence E and saturates at the higher fluences. For each fixed fluence, F was found higher starting from the Pt films (at each starting film thickness h) with respect to the Pd films. For each fixed metal and fluence, F was found to be higher decreasing the starting thickness of the deposited film. To explain the formation of the lumpy Pd and Pt nanoparticles and the behavior of F as a function of E and h both for Pd and Pt, the thermodynamic behavior of the Pd and Pt films and nanoparticles due to the interaction with the nanosecond laser is discussed. In particular, the photothermal vaporization and Coulomb explosion processes of the Pd and Pt nanoparticles are invoked as possible mechanisms for the lumpy nanoparticles formation.  相似文献   

5.
The photovoltaic (PV) effect of a bilayer anatase TiO2/BiFeO3 (BFO) film has been studied. The 20-nm ultrathin BFO layers were deposited on the fluorine-doped tin oxide (FTO) glass substrates by the chemical solution deposition method. An anatase TiO2 layer is deposited subsequently on the BFO surface via a screen-printing technique. It is found that the FTO/TiO2/Au cell exhibits negligible PV effect under solar exposure, while the one after introducing an ultrathin BFO film between TiO2 and FTO leads to a considerable PV effect with an open-circuit voltage of ?0.58 V and a photocurrent density of 18.27 µA/cm2. The FTO/BiVO4 (BVO)/TiO2/Au cell was constructed to investigate the underlying mechanism for the observed effect. A negligible PV effect of the FTO/BVO/TiO2/Au cell indicates that the PV effect of the FTO/BFO/TiO2/Au cell arises mainly from a built-in electric field in the BFO film induced by the self-polarization. Our work opens up a new path to utilize TiO2 and may influence the future design of solar cells.  相似文献   

6.
An increasing energy demand and environmental pollution create a pressing need for clean and sustainable energy solutions. TiO2 semiconductor material is expected to play an important role in helping solve the energy crisis through effective utilization of solar energy based on photovoltaic devices. Dye-sensitized solar cells (DSSCs) are potentially lower cost alternative to inorganic silicon-based photovoltaic cells. In this study, we report on the fabrication of DSSCs from anodic TiO2 nanotubes (NT) powder, produced by rapid breakdown potentiostatic anodization of Ti foil in 0.1 M HClO4 electrolyte, as photoanode. TiO2 NT powders with a typical NT outer diameter of approximately 40 nm, wall thickness of approximately 8–15 nm, and length of about 20–25 μm, have been synthesized. The counter electrode was made by electrodeposition of Pt from an aqueous solution of 5 mM H2PtCl6 onto fluorine-doped tin oxide (FTO) glass substrate. The above front-side illuminated DSSCs were compared with back-side illuminated DSSCs fabricated from anodic TiO2 NTs that were grown on the top of Ti foil as photoanode. The highest cell efficiency was 3.54% under 100 mW/cm2 light intensity (1 sun AM 1.5G light, Jsc = 14.3 mA/cm2, Voc = 0.544 V, FF = 0.455). To the best of our knowledge, this is the first report on the fabrication of DSSC from anodic TiO2 NTs powder. The TiO2/FTO photoanodes were characterized by FE-SEM, XRD, and UV–Visible spectroscopy. The catalytic properties of Pt/FTO counter electrodes have been examined by cyclic voltammetry.  相似文献   

7.
陈卓  方磊  陈远富 《物理学报》2019,68(1):17802-017802
基于TiO_2光阳极、Pt对电极的染料敏化太阳能电池(DSSC)因其优异的光电转换特性受到了广泛的关注,然而Pt昂贵的价格制约了其发展与应用.针对这一问题,本文设计、制备了一种由相对致密且高导电的石墨膜(PC层,底层)及多孔碳纳米颗粒膜(CC层,顶层)构成的低成本、高性能三维多孔复合碳层对电极.基于该CC/PC对电极的DSSC具有优异的光伏性能:在1.5标准太阳光照射下,其填充因子高达65.28%(较Pt对电极高4.1%)、光电转换效率高达5.9%(为Pt对电极的94.2%). CC/PC对电极的优异光伏性能主要归因于其独特的三维多孔导电结构,该结构有极高的比表面积和丰富的催化反应活性位,有利于电子的快速传输及离子的快速转移,在这些因素的协同作用下,其光电转换性能大大改善.  相似文献   

8.
Platinum nanoparticles(PtNPs)/graphene composite materials are synthesized by a controlled chemical reduction of H2PtCl6 on graphene sheets.The electrocatalytic activity of a PtNPs/graphene composite counter electrode for a dye-sensitized solar cell(DSSC) is investigated.The results demonstrate that the PtNPs/graphene composite has high electrocatalytic activity for the dye-sensitized solar cell.The cell employing PtNPs(1.6 wt%)/graphene counter electrode reaches an conversion efficiency(η)of 3.89% upon the excitation of 100 mW/cm2 AM 1.5 white light,which is comparable to that of the cell with a Pt-film counter electrode(η=3.76%).It suggests that one can use only 14% Pt content of the conventional Pt-film counter electrode to obtain a comparable conversion efficiency.It may be possible to obtain a high performance DSSC using the PtNPs/graphene composite with a very low Pt content as a counter electrode due to its simplicity,low cost,and large scalability.  相似文献   

9.
Semiconducting Cu2ZnSnS4 (CZTS) material has been receiving a great technological interest in the photovoltaic industry because of its low-cost non-toxic constituents, ideal direct band gap as a absorber layer and high absorption coefficient. CZTS thin films have been successfully deposited onto the fluorine-doped tin oxide/glass (glass/FTO) substrates coated glass substrates using successive ionic layer adsorption and reaction (SILAR) method and investigated for photoelectrochemical conversion (PEC) of light into electricity. The best solar cell sample showed an open-circuit voltage of 390 mV, a short-circuit current density of 636.9 μA/cm2, a fill factor of 0.62 and an efficiency of 0.396% under irradiation of 30 mW/cm2. Preliminary results obtained for solar cells fabricated with this material are promising.  相似文献   

10.
采用直流磁控溅射和后退火工艺在掺氟的SnO2(FTO)导电玻璃衬底上制备VO2薄膜, 研究了不同退火时间和不同比例的氮氧气氛对VO2薄膜性能的影响, 对VO2薄膜的结晶取向、表面形貌、表面元素的相对含量和透过率随波长变化进行了测试分析, 结果表明在最佳工艺条件下制备得到了组分相对单一的VO2薄膜. 基于FTO/VO2/FTO结构在VO2薄膜两侧的透明导电膜上施加电压并达到阈值电压时, 观察到了明显的电流突变. 当接触面积为3 mm×3 mm时, 阈值电压为1.7 V, 阈值电压随接触面积的增大而增大. 与不加电压的情况相比, FTO/VO2/FTO结构在电压作用下高低温的红外透过率差值可达28%, 经反复施加电压, 该结构仍保持性能稳定, 具有较强的电致调控能力.  相似文献   

11.
《Current Applied Physics》2009,9(5):1009-1013
We present here a comparative study on structural and magnetic properties of bulk and thin films of Mg0.95Mn0.05Fe2O4 ferrite deposited on two different substrates using X-ray diffraction (XRD) and dc magnetization measurements. XRD pattern indicates that the bulk sample and their thin films exhibit a polycrystalline single phase cubic spinel structure. It is found that the film deposited on indium tin oxide coated glass (ITO) substrate has smaller grain size than the film deposited on platinum coated silicon (Pt–Si) substrate. Study of magnetization hysteresis loop measurements infer that the bulk sample of Mg0.95Mn0.05Fe2O4 and its thin film deposited on Pt–Si substrate shows a well-defined hysteresis loop at room temperature, which reflects its ferrimagnetic behavior. However, the film deposited on ITO does not show any hysteresis, which reflects its superparamagnetic behavior at room temperature.  相似文献   

12.
This paper presents further insights and observations of the chemical bath deposition (CBD) of ZnS thin films using an aqueous medium involving Zn-salt, ammonium sulfate, aqueous ammonia, and thioure. Results on physical and chemical properties of the grown layers as a function of ammonia concentration are reported. Physical and chemical properties were analyzed using scanning electron microscopy (SEM), X-ray energy dispersive (EDX), and X-ray diffraction (XRD). Rapid growth of nanostructured ZnO films on fluorine-doped SnO2 (FTO) glass substrates was developed. ZnO films crystallized in a wurtzite hexagonal structure and with a very small quantity of Zn(OH)2 and ZnS phases were obtained for the ammonia concentration ranging from 0.75 to 2.0 M. Flower-like and columnar nanostrucured ZnO films were deposited in two ammonia concentration ranges, respectively: one between 0.75 and 1.0 M and the other between 1.4 and 2.0 M. ZnS films were formed with a high ammonia concentration of 3.0 M. The formation mechanisms of ZnO, Zn(OH)2, and ZnS phases were discussed in the CBD process. The developed technique can be used to directly and rapidly grow nanostructured ZnO film photoanodes. Annealed ZnO nanoflower and columnar nanoparticle films on FTO substrates were used as electrodes to fabricate the dye sensitized solar cells (DSSCs). The DSSC based on ZnO-nanoflower film showed an energy conversion efficiency of 0.84%, which is higher compared to that (0.45%) of the cell being constructed using a photoanode of columnar nanoparticle ZnO film. The results have demonstrated the potential applications of CBD nanostructured ZnO films for photovoltaic cells.  相似文献   

13.
Fluorine-doped tin oxide (FTO) thin films have been investigated as an alternative to indium tin oxide anodes in organic photovoltaic devices. The structural, electrical, and optical properties of the FTO films grown by pulsed laser deposition were studied as a function of oxygen deposition pressure. For 400 nm thick FTO films deposited at 300°C and 6.7 Pa of oxygen, an electrical resistivity of 5×10−4 Ω-cm, sheet resistance of 12.5 Ω/, average transmittance of 87% in the visible range, and optical band gap of 4.25 eV were obtained. Organic photovoltaic (OPV) cells based on poly(3-hexylthiophene)/[6,6]-phenyl-C61-butyric acid methyl ester bulk heterojunctions were prepared on FTO/glass electrodes and the device performance was investigated as a function of FTO film thickness. OPV cells fabricated on the optimum FTO anodes (∼300–600 nm thick) exhibited power conversion efficiencies of ∼3%, which is comparable to the same device made on commercial ITO/glass electrodes (3.4%).  相似文献   

14.
《Current Applied Physics》2010,10(4):1062-1070
Cadmium selenide (CdSe) thin films have been electrochemically deposited on the stainless steel (SS) and fluorine-doped tin oxide (FTO) coated glass substrates at room temperature (27 °C). The growth kinetics of CdSe thin films was studied by using cyclic voltammetry and chronoamperometry with variation in the pH of the electrolytic bath. In addition, the influence of the substrate on the microstructural properties of CdSe is plausibly explained. The photoelectrochemical (PEC) characterization of the film has been carried out to optimize the preparative parameters. X-ray diffraction data reveal growth of the cubic phase with preferential orientation along (1 1 1) direction. Compositional analysis of the film shows nearly stoichiometric film formation at pH 2.7. Uniform film formation with nano-sized grains was seen from SEM images. Optical absorption studies reveal that the pH of the electrolytic solution has a significant effect on the band gap of the film. PEC study revealed that CdSe film deposited at pH 2.7 on SS substrate showed better photosensitivity as compared to the film deposited on FTO coated glass.  相似文献   

15.
张传军  邬云骅  曹鸿  高艳卿  赵守仁  王善力  褚君浩 《物理学报》2013,62(15):158107-158107
在科宁7059玻璃, FTO, ITO, AZO四种衬底上磁控溅射CdS薄膜, 并在CdCl2+干燥空气380 ℃退火, 分别研究了不同衬底和退火工艺对CdS薄膜形貌、结构和光学性能的影响. 扫描电子显微镜形貌表明: 不同衬底原位溅射CdS薄膜的形貌不同, 退火后相应CdS薄膜的晶粒度和表面粗糙度明显增大. XRD衍射图谱表明: 不同衬底原位溅射和退火CdS薄膜均为六角相和立方相的混相结构, 退火前后科宁7059玻璃, FTO, AZO衬底上CdS薄膜有 H(002)/C(111) 最强衍射峰, ITO衬底原位溅射CdS薄膜没有明显的最强衍射峰, 退火后出现 H(002)/(111) 最强衍射峰. 紫外-可见分光光度计分析表明: AZO, FTO, ITO, 科宁7059玻璃衬底CdS薄膜的可见光平均透过率依次减小, 退火后相应衬底CdS薄膜的可见光平均透过率增大, 光学吸收系数降低; 退火显著增大了不同衬底CdS薄膜的光学带隙. 分析得出: 上述结果是由于不同衬底类型和退火工艺对CdS多晶薄膜的形貌、结构和带尾态掺杂浓度改变的结果. 关键词: CdS薄膜 磁控溅射 退火再结晶 带尾态  相似文献   

16.
A poly(vinyl chloride) (PVC) main chain was grafted with poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) containing a quaternary amine group using atom transfer radical polymerization. The successful synthesis of a PVC-g-PDMAEMA graft copolymer was confirmed by Fourier transform infrared, nuclear magnetic resonance, thermogravimetric analysis, and transmission electron microscopy. The PVC-g-PDMAEMA graft copolymer was used as a structure-directing agent (SDA) for the fabrication of a mesoporous thin film containing a titanium dioxide (TiO2) layer. To control the porosity of the resultant inorganic layer, the ratio of SDA to TTIP as well as the concentration of the sol?Cgel was varied. The structure and porosity of the mesoporous film were characterized by XRD and SEM analysis. The mesoporous TiO2 film fabricated on the FTO surface was used as a photoanode for the dye-sensitized solar cell (DSSC). DSSC performance was the greatest when using TiO2 film with a higher porosity and lower interfacial resistance. The highest energy conversion efficiency reached 3.2?% at 100?mW/cm2, which was one of the highest reported values for a quasi-solid-state DSSC with 600-nm-thick TiO2 film.  相似文献   

17.
史晓慧  许珂敬 《物理学报》2016,65(13):138101-138101
以SnCl_4·5H_2O为锡源,SnF_2为氟源,采用溶胶-凝胶-蒸镀法制备F掺杂的SnO_2透明导电氧化物薄膜(FTO薄膜).通过正交实验研究确定最佳反应温度、反应时间和蒸镀温度等制备条件.主要研究元素F的掺杂和膜的结构对FTO薄膜性能的影响,并采用傅里叶变换红外光谱仪、热重-差热分析、X射线衍射、高分辨透射电子显微镜和扫描电子显微镜等进行样品的性能表征.研究结果表明,当反应温度50?C、反应时间5 h、烧结(蒸镀)温度600?C、镀膜次数1次、而F/Sn=14 mol%时,FTO薄膜性能指数ΦTC最大,综合光电性能最优,表面电阻为14.7?·cm-1,平均透光率为74.4%.FTO薄膜内颗粒的平均粒径为20 nm,呈四方金红石型结构,F的掺入替代了部分的O,形成了SnO_(2-x)F_x晶体结构.F的掺杂量是影响FTO薄膜的主要因素,F过多或过少均不利于SnO_(2-x)F_x晶体的生长;FTO薄膜的结构、颗粒形状、大小等三维信息也是影响薄膜性能的因素,主要表现为分形维数越小,薄膜表面越平整,势垒越低,导电性能越好.  相似文献   

18.
We hereby propose a non-expensive method for the deposition of pure and Al-doped hematite photoanodes in the configuration of thin films for the application of dye-sensitized solar cells (DSSC). The electrodes have been prepared from hematite nanoparticles that were obtained by thermal degradation of a chemical precursor. The particles have been used in the preparation of a paste, suitable for both screen printing and doctor blade deposition. The paste was then spread on fluorine-doped tin oxide (FTO) to obtain porous hematite electrodes. The electrodes have been sensitized using N3 and D5 dyes and were characterized through current/voltage curves under simulated sun light (1 sun, AM 1.5) with a Pt counter electrode. Al-doping of hematite showed interesting changes in the physical and electrochemical characteristics of sensitized photoanodes since we could notice the growth of AlFe2O4 (hercynite) as a secondary crystal phase into the oxides obtained by firing the mixtures of two chemical precursors at different molar ratios. Pure and Al-doped hematite electrodes have been used in a complete n-type DSSCs. The kinetics of charge transfer through the interface dye/electrolyte was studied and compared to that of a typical p-type DSSC based on NiO photocathodes sensitized with erythrosine B. The results suggest a potential application of both Fe2O3 and Fe2O3/AlFe2O4 as photoanodes of a tandem DSSC.  相似文献   

19.
为了获得相变温度低且热致变色性能优越的光学材料, 室温下在F:SnO2 (FTO)导电玻璃基板表面沉积钨钒金属膜, 再经空气气氛下的热氧化处理, 制备了W掺杂VO2/FTO复合薄膜, 利用X射线光电子能谱、X射线衍射和扫描电镜对薄膜的结构和表面形貌进行了分析. 结果表明: 高温热氧化处理过程中没有生成W, F, V混合氧化物, W以替换V原子的方式掺杂. 与采用相同工艺和条件制备的纯VO2/FTO复合薄膜相比, W掺杂VO2薄膜没有改变晶面取向, 仍具有(110)晶面择优取向, 相变温度下降到35 ℃左右, 热滞回线收窄到4 ℃, 高低温下的近红外光透过率变化量提高到28%. 薄膜的结晶程度明显提高, 表面变得平滑致密, 具有很好的一致性, 对光电薄膜器件的设计开发和工业化生产具有重要意义. 关键词: W掺杂 2')" href="#">VO2 FTO导电玻璃 磁控溅射  相似文献   

20.
In this work, dye sensitized solar cells (DSSC’s) were constructed from black raspberry (Rubus Ideaus), black carrot (Daucuscarota L.) and rosella juice (Hibiscus Sabdariffa L.). In order to fabricate a DSSC the fluorine-doped tin (IV) oxide (FTO) thin films obtained by using spray pyrolysis technique were used as a substrate. TiO2 films on FTO layers were prepared by doctor-blading technique. Platinum-coated counter electrode and liquid Iodide/Iodine electrolyte solution were used to fabricate DSSC’s. The efficiencies of solar cells produced with black carrot, rosella and black raspberry juice were calculated as 0.25%, 0.16% and 0.16% respectively, under a sunny day in Kahramanmaraş-Turkey.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号