首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The design of narrow band gap (NBG) donors or acceptors and their application in organic solar cells (OSCs) are of great importance in the conversion of solar photons to electrons. Limited by the inevitable energy loss from the optical band gap of the photovoltaic material to the open‐circuit voltage of the OSC device, the improvement of the power conversion efficiency (PCE) of NBG‐based OSCs faces great challenges. A novel acceptor–donor–acceptor structured non‐fullerene acceptor is reported with an ultra‐narrow band gap of 1.24 eV, which was achieved by an enhanced intramolecular charge transfer (ICT) effect. In the OSC device, despite a low energy loss of 0.509 eV, an impressive short‐circuit current density of 25.3 mA cm−2 is still recorded, which is the highest value for all OSC devices. The high 10.9 % PCE of the NBG‐based OSC demonstrates that the design and application of ultra‐narrow materials have the potential to further improve the PCE of OSC devices.  相似文献   

2.
Two phenazine donor–acceptor‐conjugated copolymers (P1 and P2) with the same polymer backbone but different anchoring positions of alkoxy chain on the phenazine unit were investigated to identify the effect of changing the position of alkoxy chains on their optical, electrochemical, blend film morphology, and photovoltaic properties. Although the optical absorption and frontier orbital energy levels were insensitive to the position of alkoxy chains, the film morphologies and photovoltaic performances changed significantly. P1/PC71BM blend film showed the formation of phase separation with large coarse aggregates, whereas P2/PC71BM blend film was homogeneous and smooth. Accordingly, power conversion efficiency (PCE) of photovoltaic devices increased from 1.50% for P1 to 2.54% for P2. In addition, the PCE of the polymer solar cell based on P2/PC71BM blend film could be further improved to 3.49% by using solvent vapor annealing treatment. These results clearly revealed that tuning the side‐chain position could be an effective way to adjust the morphology of the active layer and the efficiency of the photovoltaic device. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 2910–2918  相似文献   

3.
Photovoltaic performance of the organic solar cells(OSCs)based on 2-((5′-(4-((4-((E)-2-(5′-(2,2-dicyanovinyl)-3′,4-dihexyl-2,2′-bithiophen-5-yl)vinyl)phenyl)(phenyl)amino)styryl)-4,4′-dihexyl-2,2′-bithiophen-5-yl)methylene)malononitrile(L(TPAbTV-DCN))as donor and PC70BM as acceptor was optimized using 0.25 vol%high boiling point solvent additive of1-chloronaphthalene(CN),1,6-hexanedithiol(HDT),or 1,8-diodooctane(DIO).The optimized OSC based on L(TPA-bTVDCN)–PC70BM(1:2,w/w)with 0.25 vol%CN exhibits an enhanced power conversion efficiency(PCE)of 2.61%,with Voc of0.87 V,Jsc of 6.95 mA/cm2,and FF of 43.2%,under the illumination of 100 mW/cm2 AM 1.5 G simulated solar light,whereas the PCE of the OSC based on the same active layer without additive is only 1.79%.The effect of the additive on absorption spectra and the atomic force microscopy images of L(TPA-bTV-DCN)–PC70BM blend films were further investigated.The improved efficiency of the device could be ascribed to the enhanced absorption and optimized domain size in the L(TPA-bTV-DCN)–PC70BM blend film.  相似文献   

4.
《中国化学快报》2020,31(9):2452-2458
In order to boost power conversion efficiency (PCE) and operation stability of organic solar cells (OSCs), we propose a new idea of phase junction materials (PJMs) used as a photoactive layer component to improve device performance and stability. For this purpose, a novel PJM of H-TRC8 based on rhodanine unit was designed with a conjugated AH-D-A framework. Here, AH is a hydrogen-donating electron acceptor unit, D-A is an electron donor-acceptor unit. It is found that H-TRC8 has a good carrier-transporting ability, as well as definite hydrogen-bond and D-A interaction with donor/acceptor materials. While H-TRC8 is added into the PBDB-T/PC60BM blend film with 1.0 vol% DIO (1,8-diiodooctane), the resulting blend film exhibited an enhanced absorption and improved morphology. The intermolecular hydrogen bond between H-TRC8 and PBDB-T plays an important role for them, which is confirmed via FT-IR spectra and 2D 1H NMR. As a result, the PBDB-T/PC60BM-based devices with 1.25 wt% H-TRC8 and 1.0 vol% DIO exhibit a significantly improved PCE of 8.06%, which is increased by 20.6% in comparison to that in the binary devices with 1.0 vol% DIO only (PCE = 6.68%). Furthermore, the device stability is significantly enhanced with only 43% PCE roll-off at 150 °C for 120 h. This work indicates that AH-D-A-type PJMs are promising photovoltaic materials used as photoactive-layer components to achieve high-performance fullerene OSCs with high device stability.  相似文献   

5.
The design of narrow band gap (NBG) donors or acceptors and their application in organic solar cells (OSCs) are of great importance in the conversion of solar photons to electrons. Limited by the inevitable energy loss from the optical band gap of the photovoltaic material to the open‐circuit voltage of the OSC device, the improvement of the power conversion efficiency (PCE) of NBG‐based OSCs faces great challenges. A novel acceptor–donor–acceptor structured non‐fullerene acceptor is reported with an ultra‐narrow band gap of 1.24 eV, which was achieved by an enhanced intramolecular charge transfer (ICT) effect. In the OSC device, despite a low energy loss of 0.509 eV, an impressive short‐circuit current density of 25.3 mA cm−2 is still recorded, which is the highest value for all OSC devices. The high 10.9 % PCE of the NBG‐based OSC demonstrates that the design and application of ultra‐narrow materials have the potential to further improve the PCE of OSC devices.  相似文献   

6.
High efficiency organic solar cells (OSCs) based on A-DA′D-A type small molecule acceptors (SMAs) were mostly fabricated by toxic halogenated solvent processing, and power conversion efficiency (PCE) of the non-halogenated solvent processed OSCs is mainly restricted by the excessive aggregation of the SMAs. To address this issue, we developed two vinyl π-spacer linking-site isomerized giant molecule acceptors (GMAs) with the π-spacer linking on the inner carbon (EV-i) or out carbon (EV-o) of benzene end group of the SMA with longer alkyl side chains (ECOD) for the capability of non-halogenated solvent-processing. Interestingly, EV-i possesses a twisted molecular structure but enhanced conjugation, while EV-o shows a better planar molecular structure but weakened conjugation. The OSC with EV-i as acceptor processed by the non-halogenated solvent o-xylene (o-XY) demonstrated a higher PCE of 18.27 % than that of the devices based on the acceptor of ECOD (16.40 %) or EV-o (2.50 %). 18.27 % is one of the highest PCEs among the OSCs fabricated from non-halogenated solvents so far, benefitted from the suitable twisted structure, stronger absorbance and high charge carrier mobility of EV-i. The results indicate that the GMAs with suitable linking site would be the excellent candidates for fabricating high performance OSCs processed by non-halogenated solvents.  相似文献   

7.
《中国化学》2018,36(3):199-205
We report a new small molecular acceptor, ITIC‐OEG, which is based on indacenodithieno[3,2‐b]thiophene and 1,1‐(dicyanomethylene)‐3‐ indanone including oligoethyleneglycol (OEG) side‐chains. ITIC‐OEG was found to have higher dielectric constant (εr=5.6) than that of a reference molecule of ITIC with normal alkyl substituents (εr=3.9). The dielectric constant of medium influences significantly the exciton binding energy and the resulting charge separation and recombination. The optical, electrochemical and morphological properties of ITIC‐OEG and its photovoltaic characteristics were investigated by blending with a semi‐crystalline donor polymer, PPDT2FBT, with comparison to those of ITIC. ITIC‐OEG shows more red‐shifted absorption and stronger crystalline packing than ITIC. However, the lower photovoltaic performance (with 1.58% power conversion efficiency, PCE) was measured for PPDT2FBT:ITIC‐OEG, compared to PPDT2FBT:ITIC (5.52% PCE). The incompatibility between PPDT2FBT and ITIC‐OEG (due to high hydrophilic nature of OEG chains) resulted in poor intermixing with large domain separation over 300 nm, showing inefficient charge separation and significant charge recombination. Therefore, to investigate the effect of dielectric constant of the materials on the charge separation and recombination, the blend morphology of the PPDT2FBT:ITIC‐OEG should be optimized first by improving their miscibility and phase separation.  相似文献   

8.
《中国化学》2018,36(5):406-410
All polymer solar cells (all‐PSCs), possessing superior mechanical strength and flexibility, offer the commercialization opportunity of the PSCs for flexible and portable devices. In this work, we designed and synthesized two copolymer acceptors based on dicyanodistyrylbenzene (DCB) and naphthalene diimide (NDI) units. The corresponding copolymer acceptors are denoted as PDCB‐NDI812 and PDCB‐NDI1014. The medium band gap copolymer PBDB‐T was selected as donor material for investigation of the photovoltaic performance. Two all‐PSCs devices showed power conversion efficiencies (PCE) of 4.26% and 3.43% for PDCB‐NDI812 and PDCB‐NDI1014, respectively. The improved PCE was ascribed to the higher short‐circuit current (JSC), greater charge carrier mobility and higher exciton dissociation probability of the PBDB‐T:PDCB‐NDI812 blend film. These results suggest that DCB unit and NDI unit based copolymer acceptors are promising candidates for high performance all‐PSCs.  相似文献   

9.
Effect of the device fabrication conditions on photovoltaic performance of the polymer solar cells based on poly(3‐hexylthiophene) (P3HT) as donor and indene‐C70 bisadduct (IC70BA) as acceptor was studied systematically. The device fabrication conditions we studied include pre‐thermal annealing temperature, active layer thickness, and the P3HT:IC70BA weight ratios. For devices with a 188‐nm‐thick active layer of P3HT:IC70BA (1:1, w:w) blend film and pre‐thermal annealing at 150°C for 10 min, maximum power conversion efficiency (PCE) reached 5.82% with Voc of 0.81 V, Isc of 11.37 mA/cm2, and FF of 64.0% under the illumination of AM1.5G, 100 mW/cm2.  相似文献   

10.
We describe herein the synthesis of novel donor–acceptor conjugated polymers with dithienobenzodithiophenes (DTBDT) as the electron donor and 2,1,3‐benzothiadiazole as the electron acceptor for high‐performance organic photovoltaics (OPVs). We studied the effects of strategically inserting thiophene into the DTBDT as a substituent on the skeletal structure on the opto‐electronic performances of fabricated devices. From UV/Vis absorption, electrochemical, and field‐effect transistor analyses, we found that the thiophene‐containing DTBDT derivative can substantially increase the orbital overlap area between adjacent conjugated chains and thus dramatically enhance charge‐carrier mobility up to 0.55 cm2 V?1 s?1. The outstanding charge‐transport characteristics of this polymer allowed the realization of high‐performance organic solar cells with a power conversion efficiency (PCE) of 5.1 %. Detailed studies on the morphological factors that enable the maximum PCE of the polymer solar cells are discussed along with a hole/electron mobility analysis based on the space‐charge‐limited current model.  相似文献   

11.
The elaborate control of the vertical phase distribution within an active layer is critical to ensuring the high performance of organic solar cells (OSCs), but is challenging. Herein, a self-stratification active layer is realised by adding a novel polyfluoroalkyl-containing non-fullerene small-molecule acceptor (NFSMA), EH-C8F17, as the guest into PM6:BTP-eC9 blend. A favourable vertical morphology was obtained with an upper acceptor-enriched thin layer and a lower undisturbed bulk heterojunction layer. Consequently, a power conversion efficiency of 18.03 % was achieved, higher than the efficiency of 17.40 % for the device without EH-C8F17. Additionally, benefiting from the improved charge transport and collection realised by this self-stratification strategy, the OSC with a thickness of 350 nm had an impressive PCE of 16.89 %. The results of the study indicate that polyfluoroalkyl-containing NFSMA-assisted self-stratification within the active layer is effective for realising an ideal morphology for high-performance OSCs.  相似文献   

12.
In order to improve the solution processability of 4,7‐bis(thiophen‐2‐yl)benzo[c][1,2,5]thiadiazole (DTBT)‐based polymers, novel donor–acceptor polymer PTOBDTDTBT containing DTBT and benzo[1,2‐b:4,5‐b′]dithiophene (BDT) with conjugated side chain is designed and synthesized with narrow band gap 1.67 eV and low lying HOMO energy level −5.4 eV. The blend film of PTOBDTDTBT and PC71BM exhibits uniform and smooth film with root‐mean‐square (RMS) surface roughness 1.15 nm because of the excellent solubility of PTOBDTDTBT when six octyloxy side chains are introduced. The hole mobility of the blend film is measured to be 4.4 × 10−5 cm2 V−1s−1 by the space‐charge‐limited current (SCLC) model. The optimized polymer solar cells (PSCs) based on PTOBDTDTBT /PC71BM exhibits an improved PCE of 6.21% with Voc = 0.80 V, Jsc = 11.94 mA cm−2 and FF = 65.10%, one of the highest PCE in DTBT containing polymers.

  相似文献   


13.
Donor–acceptor (D–A) conjugated polymers bearing non‐covalent configurationally locked backbones have a high potential to be good photovoltaic materials. Since 1,4‐dithienyl‐2,5‐dialkoxybenzene ( TBT ) is a typical moiety possessing intramolecular S…O interactions and thus a restricted planar configuration, it was used in this work as an electron‐donating unit to combine with the following electron‐accepting units: 3‐fluorothieno[3,4‐b]thiophene ( TFT ), thieno‐[3,4‐c]pyrrole‐4,6‐dione ( TPD ), and diketopyrrolopyrrole ( DPP ) for the construction of such D–A conjugated polymers. Therefore, the so‐designed three polymers, PTBTTFT , PTBTTPD , and PTBTDPP , were synthesized and investigated on their basic optoelectronic properties in detail. Moreover, using [6,6]‐phenyl‐C71‐butyric acid methyl ester (PC71BM) as acceptor material, polymer solar cells (PSCs) were fabricated for studying photovoltaic performances of these polymers. It was found that the optimized PTBTTPD cell gave the best performance with a power conversion efficiency (PCE) of 4.49%, while that of PTBTTFT displayed the poorest one (PCE = 1.96%). The good photovoltaic behaviors of PTBTTPD come from its lowest‐lying energy level of the highest occupied molecular orbital (HOMO) among the three polymers, and good hole mobility and favorable morphology for its PC71BM‐blended film. Although PTBTDPP displayed the widest absorption spectrum, the largest hole mobility, and regular chain packing structure when blended with PC71BM, its unmatched HOMO energy level and disfavored blend film morphology finally limited its solar cell performance to a moderate level (PCE: 3.91%). © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 689–698  相似文献   

14.
《中国化学》2018,36(6):502-506
Fluorination of conjugated polymers is one of the effective strategies to tune the molecular energy levels and morphology for high efficient polymer solar cells (PSCs). Herein, two novel donor‐acceptor conjugated polymers, PffBT and PBT, based on bis(3,5‐bis(hexyloxy)phenyl)benzo[1,2‐ b:4,5‐b']dithiophene and benzo[c][1,2,5]thiadiazole (BT) with or without fluorination, respectively, were synthesized, and their photovoltaic properties were compared. The polymer PffBT based on fluorinated BT showed lower frontier energy levels, improved polymer ordering, and a well‐developed fibril structure in the blend with PC71BM. As a result, the PSCs based on PffBT/PC71BM exhibit a superior power conversion efficiency (PCE) of 8.6% versus 4.4% for PBT‐based devices, due to a high space charge limit current (SCLC) hole mobility, mixed orientation of polymer crystals in the active layer, and low bimolecular recombination.  相似文献   

15.
Chen  Hui  Guo  Yikun  Chao  Pengjie  Liu  Longzhu  Chen  Wei  Zhao  Dahui  He  Feng 《中国科学:化学(英文版)》2019,62(2):238-244
The efficient ternary all-polymer solar cells(PSCs) are designed and fabricated, using a polymer acceptor of NDP-V-C7 and analogue co-donors containing a chlorinated polymer PBCl T and classical PTB7-Th. PBCl T and PTB7-Th possess very similar chemical structure and matched energy levels to form the cascade of the co-donors. Meanwhile, benefiting from those analogous polymer structures, there is little influence of the morphology in blend film compared to their pristine polymer films. The binary PBCl T:NDP-V-C7 devices exhibit a high open-circuit voltage(V_(oc)) due to the deep HOMO level of PBCl T. The V_(oc)of all-PSCs could be finely manipulated by adjusting the content of PBCl T in blend film. The ternary all-PSCs have the more balanced charge mobility and prolonged carrier lifetime compared to the binary devices. The PBCl T also help improve the miscibility of ternary blend and suppress crystallization in films, bringing about favorable morphology with appropriate orientation and surface roughness in blend film. With the optimal processing, the champion ternary all-PSCs obtain a high PCE of 9.03%, which is about 10% enhancement compared to that of binary device. The results indicate that the ternary approach using analogue co-donors is a practical method to enhance the performance of all-PSCs.  相似文献   

16.
Non‐fullerene all‐small‐molecule organic solar cells (NFSM‐OSCs) have shown potential as OSCs, owing to their high purity, easy synthesis and good reproducibility. However, challenges in the modulation of phase separation morphology have limited their development. Herein, two novel small molecular donors, BTEC‐1F and BTEC‐2F, derived from the small molecule DCAO3TBDTT, are synthesized. Using Y6 as the acceptor, devices based on non‐fluorinated DCAO3TBDTT showed an open circuit voltage (Voc) of 0.804 V and a power conversion efficiency (PCE) of 10.64 %. Mono‐fluorinated BTEC‐1F showed an increased Voc of 0.870 V and a PCE of 11.33 %. The fill factor (FF) of di‐fluorinated BTEC‐2F‐based NFSM‐OSC was improved to 72.35 % resulting in a PCE of 13.34 %, which is higher than that of BTEC‐1F (61.35 %) and DCAO3TBDTT (60.95 %). To our knowledge, this is the highest PCE for NFSM‐OSCs. BTEC‐2F had a more compact molecular stacking and a lower crystallinity which enhanced phase separation and carrier transport.  相似文献   

17.
The development of molecular donor/polymer acceptor blend(MD/PA)-type organic solar cells(OSCs) lags far behind other type OSCs. It is due to the large-size phase separation morphology of MD/PAblend, which results from the high crystallinity of molecular donors. In this article, to suppress the crystallinity of molecular donors, we use ternary blends to develop OSCs based on one polymer acceptor(P-BNBP-f BT) and two molecular donors(DR3 TBDTT and BTR) with similar chemical structures.The ternary OSC exhibits a power conversion efficiency(PCE) of 4.85%, which is higher than those of the binary OSCs(PCE=3.60% or 3.86%). To our best knowledge, it is the first report of ternary MD/PA-type OSCs and this PCE is among the highest for MD/PA-type OSCs reported so far. Compared with the binary blends, the ternary blend exhibits decreased crystalline size and improved face-on orientation of the donors. As a result, the ternary blend exhibits improved and balanced charge mobilities, suppressed charge recombination and increased donor/acceptor interfacial areas, which leads to the higher shortcircuit current density. These results suggest that using ternary blend is an effective strategy to manipulate active layer morphology and enhance photovoltaic performance of MD/PA-type OSCs.  相似文献   

18.
An alternating donor‐acceptor copolymer based on a benzotriazole and benzodithiophene was synthesized and selenophene was incorporated as π‐bridge. The photovoltaic and optical properties of polymer were studied. The copolymer showed medium band gap and dual absorption peaks in UV‐Vis absorption spectra. Photovoltaic properties of P‐SBTBDT were performed by conventional device structure. The OSC device based on polymer: PC71BM (1:1, w/w) exhibited the best PCE of 3.60% with a Voc of 0.67 V, a Jsc of 8.95 mA/cm2, and a FF of 60%. This finding was supported with morphological data and space charge limited current (SCLC) mobilities. The hole mobility of the copolymer was estimated through SCLC model. Although surface roughness of the active layer is really high, mobility of a polymer was found as 7.46 × 10?3 cm2/Vs for optimized device that can be attributed to Se?Se interactions due to the larger, more‐polarizable Se atom. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 528–535  相似文献   

19.
《先进技术聚合物》2018,29(2):914-920
Doping a low‐bandgap polymer material (PDTBDT‐DTNT) as a complementary electron donor in poly(3‐hexylthiophene) (P3HT) and [6,6]‐phenyl‐C61‐butyricacid methyl ester (PC61BM) blend is experimented to improve the power conversion efficiency (PCE) of organic solar cells (OSCs). The PCE of OSCs was increased from 3.19% to 3.75% by doping 10 wt% PDTBDT‐DTNT, which was 17.55% higher than that of the OSCs based on binary blend of P3HT:PC61BM (host cells). The short‐circuit current density (Jsc) was increased to 10.11 mA·cm−2 compared with the host cells. Although the PCE improvement could partly be attributed to more photon harvest for complementary absorption of 2 donors by doping appropriate PDTBDT‐DTNT, the promotion of charge separation and transport as well as the suppression of charge recombination due to a matrix of cascade energy levels is also important. And the better morphology of the active layer films is beneficial to the optimized performance of ternary devices.  相似文献   

20.
《中国化学快报》2020,31(9):2459-2464
In this article, three novel and simple molecular structure with donor-acceptor (D-A) type copolymers via only head-to-head alkoxy (OR) and/or alkylthio (SR) side chains onto the bithiophene (BT) as donor units and fluorinated benzotriazole (FBTA) as acceptor unit, namely, PBTOR-FBTA, PBTOSR-FBTA and PBTSR-FBTA, were successfully designed and synthesized. The impacts of sulfur-oxygen (S⋯O) or sulfur-sulfur (S⋯S) noncovalent interactions on their physicochemical properties, molecular stacking, carrier mobility, morphologies of blend films, as well as their photovoltaic performance were deeply and systematically studied. The introduction of SR side-chains suddenly lowered the highest occupied molecular orbital (HOMO) energy levels, blue-shifted absorption, enhanced π-π stacking, as well as improved morphology of the photoactive layer blends in comparison with the reference polymer without SR side-chain. Polymer solar cells (PSCs) were fabricated to estimate their photovoltaic performance of the polymers. Under an optimized blend ratio of PBTSR-FBTA:PC71BM (1:0.8, w/w), the PBTSR-FBTA-based device exhibits a higher power conversion efficiency (PCE) of 6.25%, which is about 3.34 and 1.87 folds than that of the PBTOR-FBTA and PBTOSR-FBTA-based devices, respectively. Our research results demonstrate that the modification of the simple and low-cost SR side chains is an effective strategy to improve the photovoltaic performance of the polymers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号