首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
A computational study of the N(4S) + CH3 reaction has been carried out. The reactants approach through an attractive potential surface leading to an intermediate, H3CN, whose formation does not involve any barrier. In agreement with the experimental results, the dominant channel for this reaction is H2CN+H. The theoretically estimated rate coefficient for the overall process at 298 K is 9.1 x 10(-12) cm3 s(-1) molecule(-1), which is nearly 1 order of magnitude lower than the experimental result, but also much larger than those computed for the reactions of ground-state nitrogen atoms with halomethyl radicals. The analysis of the singlet potential energy surface, and the corresponding computational kinetic study, shows that for the reaction of excited nitrogen atoms with methyl radicals, the preferred product from the kinetic point of view is also H2CN+H, but in this case production of HCN is significant (with branching ratios around 0.185). According to our calculations, spin-forbidden processes are highly unlikely for the N(4S) + CH3 reaction. However, further evolution of the preferred products, H2CN+H, might explain the experimental observation of hydrogen cyanide as a minor product in this reaction.  相似文献   

2.
Reaction cross sections and product velocity distributions are presented for the bimolecular gas-phase nucleophilic substitution (S(N)2) reaction Cl(-) + CH(3)Br --> CH(3)Cl + Br(-) as a function of collision energy, 0.06-24 eV. The exothermic S(N)2 reaction is inefficient compared with phase space theory (PST) and ion-dipole capture models. At the lowest energies, the S(N)2 reaction exhibits the largest cross sections and symmetrical forward/backward scattering of the CH(3)Cl + Br(-) products. The velocity distributions of the CH(3)Cl + Br(-) products are in agreement with an isotropic PST distribution, consistent with a complex-mediated reaction and a statistical internal energy distribution of the products. Above 0.2 eV, the velocity distributions become nonisotropic and nonstatistical, exhibiting CH(3)Cl forward scattering between 0.2 and 0.6 eV. A rebound mechanism with backward scattering above 0.6 eV is accompanied by a new rising feature in the CH(3)Cl + Br(-) cross sections. The competitive endothermic reaction Cl(-) + CH(3)Br --> CH(3) + ClBr(-) rises from its thermochemical threshold at 1.9 +/- 0.4 eV, showing nearly symmetrically scattered products just above threshold and strong backward scattering above 3 eV associated with a second feature in the cross section.  相似文献   

3.
A pulsed laser photolysis-pulsed laser induced fluorescence technique has been employed to study the recombination of mercury and chlorine atoms, Hg + Cl + M --> HgCl + M (1), and the self-reaction of chlorine atoms, Cl + Cl + M --> Cl(2) + M (2). Rate coefficients were determined as a function of pressure (200-600 Torr) and temperature (243-293 K) in N(2) buffer gas and as a function of pressure (200-600 Torr) in He buffer gas at room temperature. For reaction (1) kinetic measurements were obtained under conditions in which either mercury or chlorine atoms were the reactant in excess concentration while simultaneously monitoring the concentration of both reactants. An Arrhenius expression of (2.2 +/- 0.5) x 10(-32) exp{(680 +/- 400)((1)/(T) - (1)/(298))} cm(6) molecule(-2) s(-1) was determined for the third-order recombination rate coefficient in nitrogen buffer gas. The effective second-order rate coefficient for reaction 1 under atmospheric conditions is much smaller than prior determinations using relative rate techniques. For reaction (2) we obtain an Arrhenius expression of (8.4 +/- 2.3) x 10(-33) exp{(850 +/- 470)((1)/(T) - (1)/(298))} cm(6) molecule(-2) s(-1) for the third-order recombination rate coefficient in nitrogen buffer gas. The rate coefficients are reported with a 2sigma error of precision only; however, due to the uncertainty in the determination of absolute chlorine atom concentrations we conservatively estimate an uncertainty of +/-50% in the rate coefficients. For both reactions the observed pressure, temperature, and buffer gas dependencies are consistent with the expected behavior for three-body recombination.  相似文献   

4.
Ethyl propionate is a model for fatty acid ethyl esters used as first-generation biodiesel. The atmospheric chemistry of ethyl propionate was investigated at 980 mbar total pressure. Relative rate measurements in 980 mbar N(2) at 293 ± 0.5 K were used to determine rate constants of k(C(2)H(5)C(O)OC(2)H(5) + Cl) = (3.11 ± 0.35) × 10(-11), k(CH(3)CHClC(O)OC(2)H(5) + Cl) = (7.43 ± 0.83) × 10(-12), and k(C(2)H(5)C(O)OC(2)H(5) + OH) = (2.14 ± 0.21) × 10(-12) cm(3) molecule(-1) s(-1). At 273-313 K, a negative Arrhenius activation energy of -3 kJ mol(-1) is observed.. The chlorine atom-initiated oxidation of ethyl propionate in 980 mbar N(2) gave the following products (stoichiometric yields): ClCH(2)CH(2)C(O)OC(2)H(5) (0.204 ± 0.031), CH(3)CHClC(O)OC(2)H(5) (0.251 ± 0.040), and C(2)H(5)C(O)OCHClCH(3) (0.481 ± 0.088). The chlorine atom-initiated oxidation of ethyl propionate in 980 mbar of N(2)/O(2) (with and without NO(x)) gave the following products: ethyl pyruvate (CH(3)C(O)C(O)OC(2)H(5)), propionic acid (C(2)H(5)C(O)OH), formaldehyde (HCHO), and, in the presence of NO(x), PAN (CH(3)C(O)OONO(2)). The lack of acetaldehyde as a product suggests that the CH(3)CH(O)C(O)OC(2)H(5) radical favors isomerization over decomposition. From the observed product yields, we conclude that H-abstraction by chlorine atoms from ethyl propionate occurs 20.4 ± 3.1%, 25.1 ± 4.0%, and 48.1 ± 8.8% from the CH(3)-, -CH(2)-, and -OCH(2)- groups, respectively. The rate constant and branching ratios for the reaction between ethyl propionate and the OH radical were investigated theoretically using quantum mechanical calculations and transition state theory. The stationary points along the reaction path were optimized using the CCSD(T)-F12/VDZ-F12//BH&HLYP/aug-cc-pVTZ level of theory; this model showed that OH radicals abstract hydrogen atoms primarily from the -OCH(2)- group (80%).  相似文献   

5.
The atmospheric chemistry of two C(4)H(8)O(2) isomers (methyl propionate and ethyl acetate) was investigated. With relative rate techniques in 980 mbar of air at 293 K the following rate constants were determined: k(C(2)H(5)C(O)OCH(3) + Cl) = (1.57 ± 0.23) × 10(-11), k(C(2)H(5)C(O)OCH(3) + OH) = (9.25 ± 1.27) × 10(-13), k(CH(3)C(O)OC(2)H(5) + Cl) = (1.76 ± 0.22) × 10(-11), and k(CH(3)C(O)OC(2)H(5) + OH) = (1.54 ± 0.22) × 10(-12) cm(3) molecule(-1) s(-1). The chlorine atom initiated oxidation of methyl propionate in 930 mbar of N(2)/O(2) diluent (with, and without, NO(x)) gave methyl pyruvate, propionic acid, acetaldehyde, formic acid, and formaldehyde as products. In experiments conducted in N(2) diluent the formation of CH(3)CHClC(O)OCH(3) and CH(3)CCl(2)C(O)OCH(3) was observed. From the observed product yields we conclude that the branching ratios for reaction of chlorine atoms with the CH(3)-, -CH(2)-, and -OCH(3) groups are <49 ± 9%, 42 ± 7%, and >9 ± 2%, respectively. The chlorine atom initiated oxidation of ethyl acetate in N(2)/O(2) diluent gave acetic acid, acetic acid anhydride, acetic formic anhydride, formaldehyde, and, in the presence of NO(x), PAN. From the yield of these products we conclude that at least 41 ± 6% of the reaction of chlorine atoms with ethyl acetate occurs at the -CH(2)- group. The rate constants and branching ratios for reactions of OH radicals with methyl propionate and ethyl acetate were investigated theoretically using transition state theory. The stationary points along the oxidation pathways were optimized at the CCSD(T)/cc-pVTZ//BHandHLYP/aug-cc-pVTZ level of theory. The reaction of OH radicals with ethyl acetate was computed to occur essentially exclusively (~99%) at the -CH(2)- group. In contrast, both methyl groups and the -CH(2)- group contribute appreciably in the reaction of OH with methyl propionate. Decomposition via the α-ester rearrangement (to give C(2)H(5)C(O)OH and a HCO radical) and reaction with O(2) (to give CH(3)CH(2)C(O)OC(O)H) are competing atmospheric fates of the alkoxy radical CH(3)CH(2)C(O)OCH(2)O. Chemical activation of CH(3)CH(2)C(O)OCH(2)O radicals formed in the reaction of the corresponding peroxy radical with NO favors the α-ester rearrangement.  相似文献   

6.
Only two silyldichloramines, (C6H5)3SiNCl2 and (CH3)3SiNCl2, have been reported in the literature. The synthesis of the former was successfully repeated, and its structure was established by single-crystal X-ray diffraction and vibrational spectroscopy. Attempts to prepare (CH3)3SiNCl2 were unsuccessful; however, a new trialkylsilyldichloramine, t-BuMe2Si-NCl2, was prepared and characterized by Raman and multinuclear NMR spectroscopy. The reaction of t-BuMe2SiNCl2 with (CH3)4NF in CHF3 solution at -78 degrees C, followed by removal of all volatile products at -30 degrees C, produced the expected t-BuMe2SiF byproduct and a white solid consisting of NCl3 absorbed on Me4NCl. The NCl3 could be reversibly desorbed from the substrate and was identified as a neat liquid at room temperature by Raman spectroscopy. The observed final reaction products are consistent with the formation of an unstable N(CH3)4+NCl2- intermediate which decomposes to N(CH3)4+Cl- and NCl molecules which can dimerize to N2Cl2. Theoretical calculations confirm that NCl2- can readily lose Cl- and that N2Cl2 also possesses a low barrier toward loss of N2 to give chlorine atoms and, thus, can account for the formation of NCl3.  相似文献   

7.
The formation and the decomposition of chemically activated cyclopentoxy radicals from the c-C5H9 + O reaction have been studied in the gas phase at room temperature. Two different experimental arrangements have been used. Arrangement A consisted of a laser-flash photolysis set up combined with quantitative Fourier transform infrared spectroscopy and allowed the determination of the stable products at 4 mbar. The c-C5H9 radicals were produced via the reaction c-C5H10 + Cl with chlorine atoms from the photolysis of CFCl3; the O atoms were generated by photolysis of SO2. Arrangement B, a conventional discharge flow-reactor with molecular beam sampling, was used to determine the rate coefficient. Here, the hydrocarbon radicals (c-C5H9, C2H5, CH2OCH3) were produced via the reaction of atomic fluorine with c-C5H10, C2H6, and CH3OCH3, respectively, and detected by mass spectrometry after laser photoionization. For the c-C5H9 + O reaction, the relative contributions of intermediate formation (c-C5H9O) and direct abstraction (c-C5H8 + OH) were found to be 68 +/- 5 and 32 +/- 4%, respectively. The decomposition products of the chemically activated intermediate could be identified, and the following relative branching fractions were obtained: c-C5H8O + H (31 +/- 2%), CH2CH(CH2)2CHO + H (40 +/- 5%), 2 C2H4 + H + CO (17 +/- 5%), and C3H4O + C2H4 + H (12 +/- 5%). Additionally, the product formation of the c-C5H8 + O reaction was studied, and the following relative yields were obtained (mol %): C2H4, 24%; C3H4O, 18%; c-C5H8O, 30%; c-C5H8O, 23%; 4-pentenal, 5%. The rate coefficient of the c-C5H9 + O reaction was determined relative to the reactions C2H5 + O and CH3OCH2 + O leading to k = (1.73 +/- 0.05) x 10(14) cm3 mol(-1) s(-1). The experimental branching fractions are analyzed in terms of statistical rate theory with molecular and transition-state data from quantum chemical calculations, and high-pressure limiting Arrhenius parameters for the unimolecular decomposition reactions of C5H9O species are derived.  相似文献   

8.
We have studied the reaction between CH and N2, (1) CH + N2 --> products, in shock tube experiments using CH and NCN laser absorption. CH was monitored by continuous-wave, narrow-line-width laser absorption at 431.1 nm. The overall rate coefficient of the CH + N2 reaction was measured between 1943 and 3543 K, in the 0.9-1.4 atm pressure range, using a CH perturbation approach. CH profiles recorded upon shock-heating dilute mixtures of ethane in argon and acetic anhydride in argon were perturbed by the addition of nitrogen. The perturbation in the CH concentration was principally due to the reaction between CH and N2. Rate coefficients for the overall reaction were inferred by kinetically modeling the perturbed CH profiles. A least-squares, two-parameter fit of the current overall rate coefficient measurements was k1 = 6.03 x 1012 exp(-11150/T [K]) (cm3 mol-1 s-1). The uncertainty in k1 was estimated to be approximately +/-25% and approximately +/-35% at approximately 3350 and approximately 2100 K, respectively. At high temperatures, there are two possible product channels for the reaction between CH and N2, (1a) CH + N2 --> HCN + N and (1b) CH + N2 --> H + NCN. The large difference in the rates of the reverse reactions enabled inference of the branching ratio of reaction 1, k1b/(k1b + k1a), in the 2228-2905 K temperature range by CH laser absorption in experiments in a nitrogen bath. The current CH measurements are consistent with a branching ratio of 1 and establish NCN and H as the primary products of the CH + N2 reaction. A detailed and systematic uncertainty analysis, taking into account experimental and mechanism-induced contributions, yields a conservative lower bound of 0.70 for the branching ratio. NCN was also detected by continuous-wave, narrow-line-width laser absorption at 329.13 nm. The measured NCN time histories were used to infer the rate coefficient of the reaction between H and NCN, H + NCN --> HCN + N, and to estimate an absorption coefficient for the NCN radical.  相似文献   

9.
Relative rate techniques were used to study the kinetics of the reactions of Cl atoms and OH radicals with CF(3)CH(2)C(O)H and CF(3)CH(2)CH(2)OH in 700 Torr of N(2) or air diluent at 296 +/- 2 K. The rate constants determined were k(Cl+CF(3)CH(2)C(O)H) = (1.81 +/- 0.27) x 10(-11), k(OH+CF(3)CH(2)C(O)H) = (2.57 +/- 0.44) x 10(-12), k(Cl+CF(3)CH(2)CH(2)OH) = (1.59 +/- 0.20) x 10(-11), and k(OH+CF(3)CH(2)CH(2)OH) = (6.91 +/- 0.91) x 10(-13) cm(3) molecule(-1) s(-1). Product studies of the chlorine initiated oxidation of CF(3)CH(2)CH(2)OH in the absence of NO show the sole primary product to be CF(3)CH(2)C(O)H. Product studies of the chlorine initiated oxidation of CF(3)CH(2)CH(2)OH in the presence of NO show the primary products to be CF(3)CH(2)C(O)H (81%), HC(O)OH (10%), and CF(3)C(O)H. Product studies of the chlorine initiated oxidation of CF(3)CH(2)C(O)H in the absence of NO show the primary products to be CF(3)C(O)H (76%), CF(3)CH(2)C(O)OH (14%), and CF(3)CH(2)C(O)OOH (< or =10%). As part of this work, an upper limit of k(O(3)+CF(3)CH(2)CH(2)OH) < 2 x 10(-21) cm(3) molecule(-1) s(-1) was established. Results are discussed with respect to the atmospheric chemistry of fluorinated alcohols.  相似文献   

10.
The kinetics and mechanism of the reaction Cl + CH3(CH2)3CHO was investigated using absolute (PLP-LIF) and relative rate techniques in 8 Torr of argon or 800-950 Torr of N2 at 295 +/- 2 K. The absolute rate experiments gave k[Cl+CH3(CH2)3CHO] = (2.31 +/- 0.35) x 10(-10) in 8 Torr of argon, while relative rate experiments gave k[Cl+CH3(CH2)3CHO] = (2.24 +/- 0.20) x 10(-10) cm3 molecule(-1) s(-1) in 800-950 Torr of N2. Additional relative rate experiments gave k[Cl+CH3(CH2)3C(O)Cl] = (8.74 +/- 1.38) x 10(-11) cm3 molecule-1 s(-1) in 700 Torr of N2. Smog chamber Fourier transform infrared (FTIR) techniques indicated that the acyl-forming channel accounts for 42 +/- 3% of the reaction. The results are discussed with respect to the literature data and the importance of long range (greater than or equal to two carbon atoms along the aliphatic chain) effects in determining the reactivity of organic molecules toward chlorine atoms.  相似文献   

11.
Reactions of chloramine, NH2Cl, with HO-, RO- (R = CH3, CH3CH2, CH3CH2CH2, C6H5CH2, CF3CH2), F- , HS- , and Cl- have been studied in the gas phase using the selected ion flow tube technique. Nucleophilic substitution (S(N)2) at nitrogen to form Cl- has been observed for all the nucleophiles. The reactions are faster than the corresponding S(N)2 reactions of methyl chloride; the chloramine reactions take place at nearly every collision when the reaction is exothermic. The thermoneutral identity S(N)2 reaction of NH2Cl with Cl-, which occurs approximately once in every 100 collisions, is more than two orders of magnitude faster than the analogous reaction of CH3Cl. The significantly enhanced S(N)2 reactivity of NH2Cl is consistent with a previous theoretical prediction that the barrier height for the S(N)2 identity reaction at nitrogen is negative relative to the energy of the reactants, whereas this barrier height for reaction at carbon is positive. Competitive proton abstraction to form NHCl- has also been observed with more highly basic anions (HO-, CH3O-, and CH3CH2O-), and this is the major reaction channel for HO- and CH3O-. Acidity bracketing determines the heat of deprotonation of NH2Cl as 374.4 +/- 3.0 kcal mol(-1).  相似文献   

12.
Titan is the largest satellite of Saturn. In its atmosphere, CH4 is the most abundant neutral after nitrogen. In this paper, the complex doublet potential-energy surface related to the reaction between HCN+ and CH4 is investigated at the B3LYP/6-311G(d,p), CCSD(T)/6-311G++(3df,2pd)(single-point), and QCISD/6-311G(d,p) computational levels. A total of seven products are located on the PES. The initial association of HCN+ with CH4 is found to be a prereaction complex 1 (HCNHCH3(+)) without barrier. Starting from 1, the most feasible pathway is the direct H-abstraction process (the internal C-H bond dissociation) leading to the product P1 (HCNH++CH3). By C-C addition, prereaction complex 1 can form intermediate 2 (HNCHCH3(+)) and then lead to the product P2 (CH3CNH++H). The rate-controlling step of this process is only 25.6 kcal/mol. It makes the Path P2 (1) R --> 1 --> TS1/2 --> 2 --> TS2/P2 --> P2 another possible way for the reaction. P3 (HCNCH3(+) + H), P5 (cNCHCH2(+) + H2), and P6 (NCCH3(+) + H2) are exothermic products, but they have higher barriers (more than 40.0 kcal/mol); P4 (H + HCN + CH3(+)) and P7 (H + H2 + HCCNH+) are endothermic products. They should be discovered under different experimental or interstellar conditions. The present study may be helpful for investigating the analogous ion-molecule reaction in Titan's atmosphere.  相似文献   

13.
Direct current slice velocity map ion images of the HCl(nu' = 0, J') products from the photoinitiated reactions of ground state Cl atoms with ethane, oxirane (c-C2H4O), and oxetane (c-C3H6O), at respective mean collision energies of 5.5, 6.5, and 7.3 kcal mol-1(-1), were analyzed using a Legendre moment fitting procedure. The experimental method and the fitting technique were tested by comparing the derived center-of-mass (CM) frame angular scattering distribution for the HCl(v' = 0, J' = 1) products from the reaction of Cl + C2H6 with those determined by Suits and co-workers from a crossed molecular beam experiment. For the Cl + c-C2H4O reaction, a broad, forward, and backward peaking CM frame angular distribution of HCl(nu' = 0, J' = 2) products was determined, with an average fraction of the available energy released as product translational energy of f t, equal to 0.52 +/- 0.18. The HCl consumes only 1% of the available energy, and conservation arguments dictate that the radical coproduct is significantly internally excited, corresponding to an average fraction of the available energy of f int(c-C2H3O), equal to 0.47 +/- 0.18. For the reaction of oxetane with Cl atoms, abstraction of H atoms is possible from carbon atoms from positions either alpha or beta to the O atom. The contributions to the reaction from these two H-atom abstraction channels were estimated to be 63 and 37%, consistent with an unbiased propensity for removal of alpha- and beta-H atoms that are present in 2:1 abundance. The angular scatter of products in the CM frame is also broad and forward-backward peaking and is reminiscent of the products of the Cl + CH3OH and CH3OCH3 reactions. The derived mean fraction of the available energy channelled into product translation is f t = 0.54 +/- 0.12 for each of the two abstraction pathways. With only a small amount of energy in the rotation of the HCl(nu' = 0), the remainder is accounted for by excitation of the radical coproduct internal modes, with f int(c-C3H5O) = 0.42 +/- 0.12 for both alpha- and beta-H abstraction. The broad product scattering in the CM frame observed for both reactions of Cl atoms with the cyclic ethers is consistent with reactive collisions over a wide range of impact parameters, as might be expected for barrierless reactions with loose transition states.  相似文献   

14.
The dissociative photoionization of 1,1-C(2)H(2)Cl(2), (E)-1,2-C(2)H(2)Cl(2), and (Z)-1,2-C(2)H(2)Cl(2) has been investigated at high energy and mass resolution using the imaging photoelectron photoion coincidence instrument at the Swiss Light Source. The asymmetric Cl-atom loss ion time-of-flight distributions were fitted to obtain the dissociation rates in the 10(3) s(-1) < k < 10(7) s(-1) range as a function of the ion internal energy. The results, supported by ab initio calculations, show that all three ions dissociate to the same C(2v) symmetry ClC═CH(2)(+) product ion. The 0 K onset energies thus establish the relative heats of formation of the neutral isomers, that is, the isomerization energies. The experimental rate constants, k(E), as well as ab initio calculations indicate an early isomerization transition state and no overall reverse barrier to dissociation. The major high energy channels are the parallel HCl loss and the sequential ClC═CH(2)(+) → HCCH(+) + Cl process, the latter in competition with a ClC═CH(2)(+) → ClCCH(+) + H reaction. A parallel C(2)H(2)Cl(2)(+) → C(2)HCl(2)(+) + H channel also weakly asserts itself. The 0 K onset energy for the sequential Cl loss reaction suggests no barrier to the production of the most stable acetylene ion product; thus the sequential Cl-atom loss is preceded by a ClC═CH(2)(+) → HC(Cl)CH(+) reorganization step with a barrier lower than that of the second Cl-atom loss. The breakdown diagram corresponding to this sequential dissociation reveals the internal energy distribution of the first C(2)H(2)Cl(+) daughter ion, which is determined by the kinetic energy release in the first, Cl loss reaction at high excess energies. At low kinetic energy release, this distribution corresponds to the predicted two translational degrees of freedom, whereas at higher energies, the excess energy partitioning is characteristic of only one translational degree of freedom. New Δ(f)H(o)(298K) of 3.7, 2.5, and 0.2 ± 1.75 kJ mol(-1) are proposed for 1,1-C(2)H(2)Cl(2), (E)-1,2-C(2)H(2)Cl(2), and (Z)-1,2-C(2)H(2)Cl(2), respectively, and the proton affinity of ClCCH is found to be 708.6 ± 2.5 kJ mol(-1).  相似文献   

15.
The reaction of Cl atoms, in the presence of Cl(2) and O(2), with sub-micron squalane particles is used as a model system to explore how surface hydrogen abstraction reactions initiate chain reactions that rapidly transform the chemical composition of an organic particle. The heterogeneous reaction is measured in a photochemical flow tube reactor in which chlorine atoms are produced by the photolysis of Cl(2) at 365 nm. By monitoring the heterogeneous reaction, using a vacuum ultraviolet photoionization aerosol mass spectrometer, the effective reactive uptake coefficient and the distributions of both oxygenated and chlorinated reaction products are measured and found to depend sensitively upon O(2), Cl(2), and Cl concentrations in the flow reactor. In the absence of O(2), the effective reactive uptake coefficient monotonically increases with Cl(2) concentration to a value of ~3, clearly indicating the presence of secondary chain chemistry occurring in the condensed phase. The effective uptake coefficient decreases with increasing O(2) approaching a diffusion corrected value of 0.65 ± 0.07, when 20% of the total nitrogen flow rate in the reactor is replaced with O(2). Using a kinetic model it is found that the amount of secondary chemistry and the product distributions in the aerosol phase are controlled by the competitive reaction rates of O(2) and Cl(2) with alkyl radicals. The role that a heterogeneous pathway might play in the reaction of alkyl radicals with O(2) and Cl(2) is investigated within a reasonable range of reaction parameters. These results show, more generally, that for heterogeneous reactions involving secondary chain chemistry, time and radical concentration are not interchangeable kinetic quantities, but rather the observed reaction rate and product formation chemistry depends sensitively upon the concentrations and time evolution of radical initiators and those species that propagate or terminate free radical chain reactions.  相似文献   

16.
Molecular chlorine, methanol, and helium are co-expanded into a vacuum chamber using a custom designed "late-mixing" nozzle. The title reaction is initiated by photolysis of Cl2 at 355 nm, which generates monoenergetic Cl atoms that react with CH3OH at a collision energy of 1960 +/- 170 cm(-1) (0.24 +/- 0.02 eV). Rovibrational state distributions of the nascent HCl products are obtained via 2 + 1 resonance enhanced multiphoton ionization, center-of-mass scattering distributions are measured by the core-extraction technique, and the average internal energy of the CH3OH co-products is deduced by measuring the spatial anisotropy of the HCl products. The majority (84 +/- 7%) of the HCl reaction products are formed in HCl(v = 0) with an average rotational energy of [Erot] = 390 +/- 70 cm(-1). The remaining 16 +/- 7% are formed in HCl(v = 1) and have an average rotational energy of [Erot] = 190 +/- 30 cm(-1). The HCl(v = 1) products are primarily forward scattered, and they are formed in coincidence with CH2OH products that have little internal energy. In contrast, the HCl(v = 0) products are formed in coincidence with CH2OH products that have significant internal energy. These results indicate that two or more different mechanisms are responsible for the dynamics in the Cl + CH3OH reaction. We suggest that (1) the HCl(v = 1) products are formed primarily from collisions at high impact parameter via a stripping mechanism in which the CH2OH co-products act as spectators, and (2) the HCl(v = 0) products are formed from collisions over a wide range of impact parameters, resulting in both a stripping mechanism and a rebound mechanism in which the CH2OH co-products are active participants. In all cases, the reaction of fast Cl atoms with CH3OH is with the hydrogen atoms on the methyl group, not the hydrogen on the hydroxyl group.  相似文献   

17.
采用RRKM理论和疏松过渡态模型计算了N(4S)+CH2X(X=F,Cl)反应的微正则速率常数和通道分支比.计算结果表明,在较低的内能下(E=280.29 kJ/mol), N(4S)+CH2F的主要产物为NCHF+H,占总产物的59.2%,次要产物为H2CN+F,占37.4%.而N(4S)+CH2Cl反应在E=267.78 kJ/mol时,主要产物是H2CN+Cl,占90.3%, NCHCl+H只占9.0%.在内能较高的时候(取E=500.00 kJ/mol), N(4S)+CH2F的主要通道并未变化,而N(4S)+CH2Cl的主要通道变为NCHCl+H,比例为51.5%, H2CN+Cl的比例降到40.4%.  相似文献   

18.
Relative rate techniques were used to study the kinetics of the reactions of Cl atoms and OH radicals with ethylene glycol diacetate, CH3C(O)O(CH2)2OC(O)CH3, in 700 Torr of N2/O2 diluent at 296 K. The rate constants measured were k(Cl + CH3C(O)O(CH2)2OC(O)CH3) = (5.7 +/- 1.1) x 10(-12) and k(OH + CH3C(O)O(CH2)2OC(O)CH3) = (2.36 +/- 0.34) x 10(-12) cm3 molecule-1 s-1. Product studies of the Cl atom initiated oxidation of ethylene glycol diacetate in the absence of NO in 700 Torr of O2/N2 diluent at 296 K show the primary products to be CH3C(O)OC(O)CH2OC(O)CH3, CH3C(O)OC(O)H, and CH3C(O)OH. Product studies of the Cl atom initiated oxidation of ethylene glycol diacetate in the presence of NO in 700 Torr of O2/N2 diluent at 296 K show the primary products to be CH3C(O)OC(O)H and CH3C(O)OH. The CH3C(O)OCH2O* radical is formed during the Cl atom initiated oxidation of ethylene glycol diacetate, and two loss mechanisms were identified: reaction with O2 to give CH3C(O)OC(O)H and alpha-ester rearrangement to give CH3C(O)OH and HC(O) radicals. The reaction of CH3C(O)OCH2O2* with NO gives chemically activated CH3C(O)OCH2O* radicals which are more likely to undergo decomposition via the alpha-ester rearrangement than CH3C(O)OCH2O* radicals produced in the peroxy radical self-reaction.  相似文献   

19.
The reactions of Cl atoms with XCH2I (X = H, CH3, Cl, Br, I) have been studied using cavity ring-down spectroscopy in 25-125 Torr total pressure of N2 diluent at 250 K. Formation of the XCH2I-Cl adduct is the dominant channel in all reactions. The visible absorption spectrum of the XCH2I-Cl adduct was recorded at 405-632 nm. Absorption cross-sections at 435 nm are as follows (in units of 10(-18) cm2 molecule(-1)): 12 for CH3I, 21 for CH3CH2I, 3.7 for CH2ICl, 7.1 for CH2IBr, and 3.7 for CH2I2. Rate constants for the reaction of Cl with CH3I were determined from rise profiles of the CH3I-Cl adduct. k(Cl + CH3I) increases from (0.4 +/- 0.1) x 10(-11) at 25 Torr to (2.0 +/- 0.3) x 10(-11) cm3 molecule(-1) s(-1) at 125 Torr of N2 diluent. There is no discernible reaction of the CH3I-Cl adduct with 5-10 Torr of O2. Evidence for the formation of an adduct following the reaction of Cl atoms with CF3I and CH3Br was sought but not found. Absorption attributable to the formation of the XCH2I-Cl adduct following the reaction of Cl atoms with XCH2I (X = H, CH3, Br, I) was measured as a function of temperature over the range 250-320 K.  相似文献   

20.
The reaction of CH(3)C(O)O(2) with HO(2) has been investigated at 296 K and 700 Torr using long path FTIR spectroscopy, during photolysis of Cl(2)/CH(3)CHO/CH(3)OH/air mixtures. The branching ratio for the reaction channel forming CH(3)C(O)O, OH and O(2) (reaction ) has been determined from experiments in which OH radicals were scavenged by addition of benzene to the system, with subsequent formation of phenol used as the primary diagnostic for OH radical formation. The dependence of the phenol yield on benzene concentration was found to be consistent with its formation from the OH-initiated oxidation of benzene, thereby confirming the presence of OH radicals in the system. The dependence of the phenol yield on the initial peroxy radical precursor reagent concentration ratio, [CH(3)OH](0)/[CH(3)CHO](0), is consistent with OH formation resulting mainly from the reaction of CH(3)C(O)O(2) with HO(2) in the early stages of the experiments, such that the limiting yield of phenol at high benzene concentrations is well-correlated with that of CH(3)C(O)OOH, a well-established product of the CH(3)C(O)O(2) + HO(2) reaction (via channel (3a)). However, a delayed source of phenol was also identified, which is attributed mainly to an analogous OH-forming channel of the reaction of HO(2) with HOCH(2)O(2) (reaction ), formed from the reaction of HO(2) with product HCHO. This was investigated in additional series of experiments in which Cl(2)/CH(3)OH/benzene/air and Cl(2)/HCHO/benzene/air mixtures were photolysed. The various reaction systems were fully characterised by simulations using a detailed chemical mechanism. This allowed the following branching ratios to be determined: CH(3)C(O)O(2) + HO(2)--> CH(3)C(O)OOH + O(2), k(3a)/k(3) = 0.38 +/- 0.13; --> CH(3)C(O)OH + O(3), k(3b)/k(3) = 0.12 +/- 0.04; --> CH(3)C(O)O + OH + O(2), k(3c)/k(3) = 0.43 +/- 0.10: HOCH(2)O(2) + HO(2)--> HCOOH + H(2)O + O(2), k(17b)/k(17) = 0.30 +/- 0.06; --> HOCH(2)O + OH + O(2), k(17c)/k(17) = 0.20 +/- 0.05. The results therefore provide strong evidence for significant participation of the radical-forming channels of these reactions, with the branching ratio for the title reaction being in good agreement with the value reported in one previous study. As part of this work, the kinetics of the reaction of Cl atoms with phenol (reaction (14)) have also been investigated. The rate coefficient was determined relative to the rate coefficient for the reaction of Cl with CH(3)OH, during the photolysis of mixtures of Cl(2), phenol and CH(3)OH, in either N(2) or air at 296 K and 760 Torr. A value of k(14) = (1.92 +/- 0.17) x 10(-10) cm(3) molecule(-1) s(-1) was determined from the experiments in N(2), in agreement with the literature. In air, the apparent rate coefficient was about a factor of two lower, which is interpreted in terms of regeneration of phenol from the product phenoxy radical, C(6)H(5)O, possibly via its reaction with HO(2).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号