首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
《Journal of Energy Chemistry》2017,26(6):1094-1106
The explore and development of electrocatalysts have gained significant attention due to their indispensable status in energy storage and conversion systems, such as fuel cells, metal–air batteries and solar water splitting cells. Layered double hydroxides(LDHs) and their derivatives(e.g., transition metal alloys, oxides, sulfides, nitrides and phosphides) have been adopted as catalysts for various electrochemical reactions, such as oxygen reduction, oxygen evolution, hydrogen evolution, and CO_2 reduction, which show excellent activity and remarkable durability in electrocatalytic process. In this review, the synthesis strategies, structural characters and electrochemical performances for the LDHs and their derivatives are described. In addition, we also discussed the effect of electronic and geometry structures to their electrocatalytic activity. The further development of high-performance electrocatalysts based on LDHs and their derivatives is covered by both a short summary and future outlook from the viewpoint of the material design and practical application.  相似文献   

2.
The continuous excessive usage of fossil fuels has resulted in its fast depletion, leading to an escalating energy crisis as well as several environmental issues leading to increased research towards sustainable energy conversion. Electrocatalysts play crucial role in the development of numerous novel energy conversion devices, including fuel cells and solar fuel generators. In particular, high-efficiency and cost-effective catalysts are required for large-scale implementation of these new devices. Over the last few years, transition metal chalcogenides have emerged as highly efficient electrocatalysts for several electrochemical devices such as water splitting, carbon dioxide electroreduction, and, solar energy converters. These transition metal chalcogenides exhibit high electrochemical tunability, abundant active sites, and superior electrical conductivity. Hence, they have been actively explored for various electrocatalytic activities. Herein, we have provided comprehensive review of transition-metal chalcogenide electrocatalysts for hydrogen evolution, oxygen evolution, and carbon dioxide reduction and illustrated structure–property correlation that increases their catalytic activity.  相似文献   

3.
石墨烯基催化剂的设计合成与电催化应用   总被引:2,自引:1,他引:1  
为了解决能源匮乏和环境污染的问题,研究人员正致力于寻找清洁可持续的新能源。 其中,氧气还原、氧气析出、析氢反应等是紧密联系新型清洁能源获取和存贮的重要电化学反应。 为了提高其能量转化效率,电催化剂(如碳载铂Pt/C)被广泛地用于降低其反应活化能、提高能量转化效率。 近年来,石墨烯作为一种具有高比表面积和优异导电性的二维碳材料受到了广泛关注。 通过表面杂原子掺杂、缺陷调控和引入催化活性组分等方式,获得了催化性能与贵金属催化剂相媲美,且低价格和高稳定性的非贵金属石墨烯基催化材料。 针对氧气还原、氧气析出和析氢反应在燃料电池、金属-空气电池和电催化水分解中的应用,本文概括综述了通过表/界面结构性质调控提高石墨烯电催化性能和稳定性,获得具有双功能或复合催化性能的石墨烯基催化剂的最新研究进展。 最后总结和展望了亟待解决的问题及未来的发展趋势。  相似文献   

4.
Developing clean and sustainable energies as alternatives to fossil fuels is in strong demand within modern society. The oxygen evolution reaction (OER) is the efficiency-limiting process in plenty of key renewable energy systems, such as electrochemical water splitting and rechargeable metal–air batteries. In this regard, ongoing efforts have been devoted to seeking high-performance electrocatalysts for enhanced energy conversion efficiency. Apart from traditional precious-metal-based catalysts, nickel-based compounds are the most promising earth-abundant OER catalysts, attracting ever-increasing interest due to high activity and stability. In this review, the recent progress on nickel-based oxide and (oxy)hydroxide composites for water oxidation catalysis in terms of materials design/synthesis and electrochemical performance is summarized. Some underlying mechanisms to profoundly understand the catalytic active sites are also highlighted. In addition, the future research trends and perspectives on the development of Ni-based OER electrocatalysts are discussed.  相似文献   

5.
魏家祺  陈晓东  李述周 《电化学》2022,28(10):2214012
氢气是一种清洁、高效、可再生的新型能源,并且是未来碳中和能源供应中最具潜力的化石燃料替代品。因此,可持续氢能源制造具有极大的吸引力与迫切的需求,尤其是通过清洁、环保、零排放的电解水方法。然而,目前的电解水反应受到其缓慢的动力学以及低成本/能源效率的制约。在这些方面,电化学合成通过制造先进的电催化剂和提供更高效/增值的共电解替代品,为提高水电解的效率和效益提供了广阔的前景。它是一种环保、简单的通过电解或其他电化学操作,对从分子到纳米尺度的材料进行制造的方法。本文首先介绍了电化学合成的基本概念、设计方法以及常用方法。然后,总结了电化学合成技术在电解水领域的应用及进展。我们专注于电化学合成的纳米结构电催化剂以实现更高效的电解水制氢,以及小分子的电化学氧化以取代电解水制氢中的析氧共反应,实现更高效、 增值的共电解制氢。我们系统地讨论了电化学合成条件与产物的关系,以启发未来的探索。最后,本文讨论了电化学合成在先进电解水以及其他能量转换和储存应用方面的挑战和前景。  相似文献   

6.
Electrochemical water splitting for producing hydrogen has received increasing attention. However, the large overpotential of oxygen evolution reaction (OER) is a bottleneck in water splitting. Exploiting value-added alternative reactions to replace the OER semi-reaction in water splitting can not only produce valuable products at both electrodes, but also reduce the overpotential of water splitting. Recently, metal chalcogenides (sulfides and selenides) have been widely studied in electrocatalytic reactions. This review concentrates on the recent application of metal chalcogenides in value-added anodic reactions by replacing the OER during electrochemical water splitting, including urea oxidation reaction (UOR), 5-hydroxymethylfurfural electrochemical oxidation reaction (HMF-EOR), which provides the guidance for the rational design of advanced metal chalcogenide electrocatalysts in renewable energy.  相似文献   

7.
钙钛矿型稀土氧化物价格低廉、结构可控、性质多样,在催化领域有着广阔的应用前景。本文从钙钛矿型稀土氧化物的结构类型、合成方法及电化学催化反应出发,总结了传统高温合成方法、火焰喷雾法、静电纺丝法和脉冲激光沉积法等几种最常用的合成方法,以及提升其氧析出反应(OER),氢析出反应(HER)和氧还原反应(ORR)催化能力的典型有效方法,概述了近年来钙钛矿型稀土氧化物在电解水、金属空气电池和固体氧化物燃料电池等能源转化储存装置的主要研究进展,进而对钙钛矿型稀土氧化物在能源转化储存领域的应用进行了展望。  相似文献   

8.
Electrochemical energy storage and conversion devices play a key role in the development of clean, sustainable, and efficient energy systems to meet the sustainable growth of our society. However, challenging issues including the sluggish kinetics of oxygen electrode reactions involving the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) are present, limiting the implementation of devices such as metal‐air batteries, water electrolyzers, and regenerative fuel cells. In this review, various monometallic and bimetallic transition metal oxides (TMOs) and hydroxides are summarized in terms of their application for ORR/OER, in which the merits and demerits of various precious metal and carbon‐based metal oxide materials are discussed, with requirements for better electrocatalysts and catalyst support being introduced as well. Following this, different approaches to improve catalytic activity such as the introduction of doping and defects, the manipulation of crystal facets, and the engineering of supports, compositions, and morphologies are summarized in which TMOs with improved ORR/OER catalytic activities can be synthesized, further improving the speed, stability, and polarization of electrochemical energy storage and conversion devices. Finally, perspectives into the improvement of performance and the better understanding of ORR/OER mechanisms for bifunctional electrocatalysts using in situ spectroscopic techniques and density functional theory calculations are also discussed.  相似文献   

9.
利用可再生能源产生的电能电解水制取氢气,被认为是下一代清洁能源的最佳选择之一。然而,通过电解水可持续的产生氢气需要高活性的催化剂来使得反应有效地进行。基于类石墨烯二维材料的析氢反应电催化剂展现出巨大的潜力,因而备受关注。本文主要结合我们课题组近期在析氢反应电催化剂方面的研究,介绍了类石墨烯二维材料的析氢反应电催化剂的研究进展,主要包括过渡金属二硫族化合物、前过渡金属碳化物(MXenes)以及硼单层纳米片等。最后总结和展望了析氢反应电催化剂所面临的挑战与未来发展方向。  相似文献   

10.
This review discusses the latest advances in electrodeposition of nanostructured catalysts for electrochemical energy conversion: fuel cells, water splitting, and carbon dioxide electroreduction. The method excels at preparing efficient and durable nanostructured materials, such as nanoparticles, single atom clusters, hierarchical bifunctional combinations of hydroxides, selenides, phosphides, and so on. Yet, in most cases, chemical composition cannot be decoupled from catalyst morphology. This compromises the rational design of electrodeposition procedures because performance indicators depend on both morphology and surface chemistry. We expect electrodeposition will keep unraveling its potential as the preferred method for electrocatalyst synthesis once a deeper understanding of the electrochemical growth process is combined with complex chemistries to have control of the morphology and the surface composition of complex (bifunctional) electrocatalysts.  相似文献   

11.
Efficient reversible oxygen electrodes for both the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) are vitally important for various energy conversion devices, such as regenerative fuel cells and metal–air batteries. However, realization of such electrodes is impeded by insufficient activity and instability of electrocatalysts for both water splitting and oxygen reduction. We report highly active bifunctional electrocatalysts for oxygen electrodes comprising core–shell Co@Co3O4 nanoparticles embedded in CNT‐grafted N‐doped carbon‐polyhedra obtained by the pyrolysis of cobalt metal–organic framework (ZIF‐67) in a reductive H2 atmosphere and subsequent controlled oxidative calcination. The catalysts afford 0.85 V reversible overvoltage in 0.1 m KOH, surpassing Pt/C, IrO2, and RuO2 and thus ranking them among one of the best non‐precious‐metal electrocatalysts for reversible oxygen electrodes.  相似文献   

12.
Recent years have witnessed a dramatic increase in the production of sustainable and renewable energy. However, the electrochemical performances of the various systems are limited, and there is an intensive search for highly efficient electrocatalysts by more rational control over the size, shape, composition, and structure. Of particular interest are the studies on single‐atom catalysts (SACs), which have sparked new interests in electrocatalysis because of their high catalytic activity, stability, selectivity, and 100 % atom utilization. In this Review, we introduce innovative syntheses and characterization techniques for SACs, with a focus on their electrochemical applications in the oxygen reduction/evolution reaction, hydrogen evolution reaction, and hydrocarbon conversion reactions for fuel cells (electrooxidation of methanol, ethanol, and formic acid). The electrocatalytic performance is further considered at an atomic level and the underlying mechanisms are discussed. The ultimate goal is the tailoring of single atoms for electrochemical applications.  相似文献   

13.
The development of highly efficient non-precious metal catalysts for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) is key for large-scale hydrogen evolution through water splitting technology. Here, we report an air-stable Cu-based nanostructure consisting of Mn doped CuCl and CuO (CuCl/CuO(Mn)-NF) as a dual functional electrocatalyst for water splitting. CuCl is identified as the main active component, together with Mn doping and the synergistic effect between CuCl and CuO are found to make responsibility for the excellent OER and HER catalytic activity and stability. The assembled electrolyzes also exhibit decent water splitting performance. This work not only provides a simple method for preparing Cu-based composite catalyst, but also demonstrates the great potential of Cu-based non-noble metal electrocatalysts for water splitting and other renewable energy conversion technologies.  相似文献   

14.
氢能作为零碳排放能源是被公认的最清洁能源之一,如何有效可持续地产氢是未来人类步入氢能经济首先要解决的问题。电解水技术基于电化学分解水的原理,利用可再生电能或太阳能驱动水分解为氢气和氧气,被认为是最有前途和可持续性的产氢途径。然而,无论是光解水还是电解水,均需要高活性、高稳定性的非贵金属氢析出和氧析出催化剂以使水电解反应经济节能。本文介绍了我们研究所近三年在水电解方面的研究进展,其中着重介绍了:(ⅰ)氢析出催化剂,包括利用低温磷化过渡金属(氢)氧化物的方法制备过渡金属磷化物,同时过渡金属硫化物、硒化物以及碳化物等均被成功合成并被应用为有效的阴极析氢催化剂;(ⅱ)氧析出催化剂,主要包括金属磷化物、硫化物、氧化物/氢氧化物等;(ⅲ)双功能催化剂,主要包括过渡金属磷化物、硒化物、硫化物等。最后,总结展望了发展水电解非贵金属催化剂所面临的挑战与未来发展方向。  相似文献   

15.
Electrochemical water splitting is a clean and sustainable process for hydrogen production on a large scale as the electrical power required can be obtained from various renewable energy resources. The key challenge in electrochemical water splitting process is to develop low-cost electrocatalysts with high catalytic activity for the hydrogen evolution reaction (HER) on the cathode and the oxygen evolution reaction (OER) on the anode. OER is the most important half-reaction involved in water splitting, which has been extensively studied since the last century and a large amount of electrocatalysts including noble and non-noble metal-based materials have been developed. Among them, transition metal borides and borates (TMBs)-based compounds with various structures have attracted increasing attention owing to their excellent OER performance. In recent years, many efforts have been devoted to exploring the OER mechanism of TMBs and to improving the OER activity and stability of TMBs. In this review, recent research progress made in TMBs as efficient electrocatalysts for OER is summarized. The chemical properties, synthetic methodologies, catalytic performance evaluation, and improvement strategy of TMBs as OER electrocatalysts are discussed. The electrochemistry fundamentals of OER are first introduced in brief, followed by a summary of the preparation and performance of TMBs-based OER electrocatalysts. Finally, current challenges and future directions for TMBs-based OER electrocatalysts are discussed.  相似文献   

16.
Besides their use in fuel cells for energy conversion through the oxygen reduction reaction (ORR), carbon‐based metal‐free catalysts have also been demonstrated to be promising alternatives to noble‐metal/metal oxide catalysts for the oxygen evolution reaction (OER) in metal–air batteries for energy storage and for the splitting of water to produce hydrogen fuels through the hydrogen evolution reaction (HER). This Review focuses on recent progress in the development of carbon‐based metal‐free catalysts for the OER and HER, along with challenges and perspectives in the emerging field of metal‐free electrocatalysis.  相似文献   

17.
Electrochemical water splitting has been considered an important method for facilitating renewable and sustainable energy conversion. For the practical application of water electrocatalysis, it is important to develop a non-noble metal-based, earth-abundant, highly efficient, and stable electrocatalysts for water splitting. Among the various non-noble metal-based electrocatalysts, layered transition metal chalcogenides (TMCs) have emerged as fascinating materials for electrochemical water splitting. The unique structural and electronic properties of layered TMCs make them very attractive for understanding the fundamental principles of electrocatalysis, as well as for developing highly efficient and stable electrocatalysts for the practical application of water electrocatalysis. In this mini review, we present a comprehensive overview of recent developments to improve the intrinsic electrocatalytic activity of layered transition metal chalcogenide (TMC)-based electrocatalysts for practical applications in water splitting.  相似文献   

18.
Due to the increasing global energy demands, scarce fossil fuel supplies, and environmental issues, the pursued goals of energy technologies are being sustainable, more efficient, accessible, and produce near zero greenhouse gas emissions. Electrochemical water splitting is considered as a highly viable and eco-friendly energy technology. Further, electrochemical carbon dioxide (CO2) reduction reaction (CO2RR) is a cleaner strategy for CO2 utilization and conversion to stable energy (fuels). One of the critical issues in these cleaner technologies is the development of efficient and economical electrocatalyst. Among various materials, metal-organic frameworks (MOFs) are becoming increasingly popular because of their structural tunability, such as pre- and post- synthetic modifications, flexibility in ligand design and its functional groups, and incorporation of different metal nodes, that allows for the design of suitable MOFs with desired quality required for each process. In this review, the design of MOF was discussed for specific process together with different synthetic methods and their effects on the MOF properties. The MOFs as electrocatalysts were highlighted with their performances from the aspects of hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and electrochemical CO2RR. Finally, the challenges and opportunities in this field are discussed.  相似文献   

19.
Oxygen evolution reaction(OER) is a key process for electrochemical water splitting due to its intrinsic large overpotential. Recently, layered double hydroxides(LDHs), especially Ni Fe-LDH, have been regarded as highly performed electrocatalysts for OER in alkaline condition. Here we first present a new class of Ni La-LDH electrocatalyst synthesized by an electrochemical process for efficient water splitting. The as-prepared NiL a-LDH nanosheet arrays(NSAs) give remarkable electrochemical activity and durability under alkaline environments, with a low overpotential of 209 mV for OER to deliver a current density of 10 mA cm~(-2), surpassing most of previous reported LDHs eletrocatalysts. The presence of NiLa-LDH in this work extends the studies about LDHs-based electrocatalysts, which will benefit the development of electrochemical energy storage and conversion systems.  相似文献   

20.
The rapid development of renewable-energy technologies such as water splitting, rechargeable metal–air batteries, and fuel cells requires highly efficient electrocatalysts capable of the oxygen-reduction reaction (ORR) and the oxygen-evolution reaction (OER). Herein, we report a facile sonication-driven synthesis to deposit the molecular manganese vanadium oxide precursor [Mn4V4O17(OAc)3]3− on multiwalled carbon nanotubes (MWCNTs). Thermal conversion of this composite at 900 °C gives nanostructured manganese vanadium oxides/carbides, which are stably linked to the MWCNTs. The resulting composites show excellent electrochemical reactivity for ORR and OER, and significant reactivity enhancements compared with the precursors and a Pt/C reference are reported. Notably, even under harsh acidic conditions, long-term OER activity at low overpotential is reported. In addition, we report exceptional activity of the composites for the industrially important Cl2 evolution from an aqueous HCl electrolyte. The new composite material shows how molecular deposition routes leading to highly active and stable multifunctional electrocatalysts can be developed. The facile design could in principle be extended to multiple catalyst classes by tuning of the molecular metal oxide precursor employed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号