首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 156 毫秒
1.
将文「1-3」中的一维时-空守恒格式推广到了二维情形,得到了一般坐标系下的二维Euler方程时-空守恒格式,并用几个典型算例进行了检验计算,结果表明:本文得到的二维时-空守恒格式保留了一维格式所有的优点,格式简单,通用性强,而且对激波等间断具有很高的分辨率。  相似文献   

2.
将作者原来得出的一维时-空守恒格式推广到了二维情形,得到了二维Euler方程的时.空守恒格式,并用几个典型算例进行了检验计算,结果表明:得到的二维时一空守恒格式保留了一维格式所有的优点,格式简单,通用性强,对微波等间断具有很高的分辨率.  相似文献   

3.
求解二维Euler方程的时一空守恒格式   总被引:3,自引:0,他引:3  
张增产  沈孟育 《力学学报》1999,31(2):152-158
将作者原来得出的一维时-空守恒格式推广到了二维情形,得到了二维Euler方程的时.空守恒格式,并用几个典型算例进行了检验计算,结果表明:得到的二维时一空守恒格式保留了一维格式所有的优点,格式简单,通用性强,对微波等间断具有很高的分辨率.  相似文献   

4.
将改进后的一维时-空守恒格式推广到了二维情形,得到了一个新的一般形式的二维Euler方程时-空守恒格式,并用该格式对几个具有复杂波系的流场进行了数值模拟。结果表明,该格式保留了一维格式通用性好、结构简单的优点,其计算结果精度高,对激波等间断具有很强的分辨率。  相似文献   

5.
给出了求解一维双曲型守恒律的一种半离散三阶中心迎风格式,并利用逐维进行计算的方法将格式推广到二维守恒律。构造格式时利用了波传播的单侧局部速度,三阶重构方法的引入保证了格式的精度。时间方向的离散采用三阶TVD Runge—Kutta方法。本文格式保持了中心差分格式简单的优点,即不需用Riemann解算器,避免了进行特征分解过程。用该格式对一维和二维守恒律进行了大量的数值试验,结果表明本文格式是高精度、高分辨率的。  相似文献   

6.
传统的一维通量分裂格式在计算界面数值通量时,只考虑网格界面法向的波系。采用传统的TV格式分别求解对流通量和压力通量。通过求解考虑了横向波系影响的角点数值通量来构造一种真正二维的TV通量分裂格式。在计算一维数值算例时,该格式与传统的TV格式具有相同的数值通量计算公式,因此其保留了传统的TV格式精确捕捉接触间断和膨胀激波的优点。在计算二维算例时,该格式比传统的TV格式具有更高的分辨率;在计算二维强激波问题时,消除了传统TV格式的非物理现象,表现出更好的鲁棒性;此外,该格式大大提高了稳定性CFL数,从而具有更高的计算效率。因此,本文方法是一种精确、高效并且具有强鲁棒性的数值方法,在可压缩流的数值模拟中具有广阔的应用前景。  相似文献   

7.
为了更好地求解流体动力学中的双曲守恒律方程,本文提出了一种熵相容格式。通过分析单元内跨越激波时熵的产生情况,得到熵产的显式表达式。在熵守恒通量中加入耗散项与熵增项获得熵相容格式的通量,并在此基础上加入限制器构造出高分辨率熵相容格式。在一维浅水波方程与一维相对论力学方程基础上对新格式进行检验,数值模拟结果表明:这种新的格式能准确捕捉解的结构,具有稳定、无振荡、高分辨率特性。因此,本文方法是求解双曲守恒律方程的较为理想的方法。  相似文献   

8.
松弛格式是Jin和Xin提出的无振荡有限差分方法,其主要思想是将守恒律转化为松弛方程组进行求解.本文用逐维五阶WENO重构和显隐式Runge-Kutta方法对松弛方程组的空间和时间进行离散,得到了一种求解二维双曲型守恒律五阶松弛格式.所得格式保持了松弛格式简单的优点,不用求解Riemann问题和计算通量函数的雅可比矩阵.通过二维Burgers方程和二维浅水方程的数值算例验证了格式的有效性.  相似文献   

9.
结合四阶CWENO(Cemral Weighted Essentially Non-Oscillatory)格式、四阶NCE(Natural Continuous Extensions)Runge-Kutta法和Level Set方法,很好地处理了一维双曲守恒律标量方程的激波追踪问题。针对二维双曲守恒律标量方程,成功地用五阶WENO格式、非TVD格式的四阶Runge-Kutta方法和Level Set方法进行激波追踪。将所得的数值解与标准的高阶激波捕捉方法所得的数值解进行比较,说明基于Level Set的激波追踪方法的有效性与逐点收敛性。  相似文献   

10.
通过提出一种新的守恒元和解元划分方式对二维时-空守恒元解元算法(CE/SE)进行了改进,推导了改进CE/SE算法的一、二阶精度计算格式,并给出了更高阶精度计算格式的构造方法。利用得到的改进CE/SE格式对激波反射问题、后台阶扰流问题及隔墙坑道传播问题进行了数值模拟。数值结果表明,对CE/SE算法的改进是成功的。改进CE/SE算法有诸多优点,值得在数值模拟中推广使用。  相似文献   

11.
A new numerical scheme, namely space–time conservation element and solution element (CE/SE) method, has been used for the solution of the two‐dimensional (2D) dam‐break problem. Distinguishing from the well‐established traditional numerical methods (such as characteristics, finite difference, finite element, and finite‐volume methods), the CE/SE scheme has many non‐traditional features in both concept and methodology: space and time are treated in a unified way, which is the most important characteristic for the CE/SE method; the CEs and SEs are introduced, both local and global flux conservations in space and time rather than space only are enforced; an explicit scheme with a stagger grid is adopted. Furthermore, this scheme is robust and easy to implement. In this paper, an improved CE/SE scheme is extended to solve the 2D shallow water equations with the source terms, which usually plays a critical role in dam‐break flows. To demonstrate the accuracy, robustness and efficiency of the improved CE/SE method, both 1D and 2D dam‐break problems are simulated numerically, and the results are consistent with either the analytical solutions or experimental results. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
In this paper, a new high‐order and high‐resolution method called the Runge–Kutta control volume discontinuous finite element method (RKCVDFEM) was proposed to solve 1D and 2D systems of hyperbolic conservation laws. Its main advantage lies in the local conservation, and it is simpler than the Runge–Kutta discontinuous Galerkin finite element method (RKDGM). The theoretical analysis showed that the RKCVDFEM has formally an optimal convergence order for 1D systems. Based on logically rectangular grids of irregular quadrilaterals, a scheme for 2D systems was constructed. Some classical problems were simulated and the validity of the method was presented. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
In this article, a new methodology for developing discrete geometric conservation law (DGCL) compliant formulations is presented. It is carried out in the context of the finite element method for general advective–diffusive systems on moving domains using an ALE scheme. There is an extensive literature about the impact of DGCL compliance on the stability and precision of time integration methods. In those articles, it has been proved that satisfying the DGCL is a necessary and sufficient condition for any ALE scheme to maintain on moving grids the nonlinear stability properties of its fixed‐grid counterpart. However, only a few works proposed a methodology for obtaining a compliant scheme. In this work, a DGCL compliant scheme based on an averaged ALE Jacobians formulation is obtained. This new formulation is applied to the θ family of time integration methods. In addition, an extension to the three‐point backward difference formula is given. With the aim to validate the averaged ALE Jacobians formulation, a set of numerical tests are performed. These tests include 2D and 3D diffusion problems with different mesh movements and the 2D compressible Navier–Stokes equations. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
In this paper, the locally conservative Galerkin (LCG) method (Numer. Heat Transfer B Fundam. 2004; 46 :357–370; Int. J. Numer. Methods Eng. 2007) has been extended to solve the incompressible Navier–Stokes equations. A new correction term is also incorporated to make the formulation to give identical results to that of the continuous Galerkin (CG) method. In addition to ensuring element‐by‐element conservation, the method also allows solution of the governing equations over individual elements, independent of the neighbouring elements. This is achieved within the CG framework by breaking the domain into elemental sub‐domains. Although this allows discontinuous trial function field, we have carried out the formulation using the continuous trial function space as the basis. Thus, the changes in the existing CFD codes are kept to a minimum. The edge fluxes, establishing the continuity between neighbouring elements, are calculated via a post‐processing step during the time‐stepping operation. Therefore, the employed formulation needs to be carried out using either a time‐stepping or an equivalent iterative scheme that allows post‐processing of fluxes. The time‐stepping algorithm employed in this paper is based on the characteristic‐based split (CBS) scheme. Both steady‐ and unsteady‐state examples presented show that the element‐by‐element formulation employed is accurate and robust. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

15.
In this work, we present a total variation diminishing (TVD) scheme in the zero relaxation limit for nonlinear hyperbolic conservation law using flux limiters within the framework of a relaxation system that converts a nonlinear conservation law into a system of linear convection equations with nonlinear source terms. We construct a numerical flux for space discretization of the obtained relaxation system and modify the definition of the smoothness parameter depending on the direction of the flow so that the scheme obeys the physical property of hyperbolicity. The advantages of the proposed scheme are that it can give second‐order accuracy everywhere without introducing oscillations for 1‐D problems (at least with) smooth initial condition. Also, the proposed scheme is more efficient as it works for any non‐zero constant value of the flux limiter ? ? [0, 1], where other TVD schemes fail. The resulting scheme is shown to be TVD in the zero relaxation limit for 1‐D scalar equations. Bound for the limiter function is obtained. Numerical results support the theoretical results. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

16.
Within the mixed FEM, the mini‐element that uses a bubble shape function for the solution of the shallow water wave equations on triangle meshes is simplified to a sparse element formulation. The new formulation has linear shape functions for water levels and constant shape functions for velocities inside each element. The suppression of decoupled spurious solutions is excellent with the new scheme. The linear dispersion relation of the new element has similar advantages as that of the wave equation scheme (generalised wave continuity scheme) proposed by Lynch and Gray. It is shown that the relation is monotonic over all wave numbers. In this paper, the time stepping scheme is included in the dispersion analysis. In case of a combined space–time staggering, the dispersion relation can be improved for the shortest waves. The sparse element is applied in the flow model Bubble that conserves mass exactly. At the same time, because of the limited number of degrees of freedom, the computational efficiency is high. The scheme is not restricted to orthogonal triangular meshes. Three test cases demonstrate the very good accuracy of the proposed scheme. The examples are the classical quarter annulus test case for the linearised shallow water equations, the hydraulic jump and the tide in the Elbe river mouth. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号