首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
A series of aregic poly(ester amide)s (a‐PEAT6) with ester/amide ratios (a : b) varying from 1 : 19 to 1 : 2 were prepared with L ‐tartaric acid, 6‐aminohexanol, and 1,6 hexanediamine as the starting materials. Polycondensation in a solution of the diamine with mixtures of pentachlorophenyl‐activated di‐O‐methyl‐L ‐tartaric and 6‐aminohexyl‐di‐O‐methyl‐L ‐tartaric acids led to a‐PEAT6(a : b), with the a : b ratio determined by the composition of the feed. The newly synthesized poly(ester amide)s were characterized by elemental analysis, size exclusion chromatography, and IR and NMR spectroscopy. They had number‐average molecular weights between 25,000 and 45,000 and were highly crystalline, showing melting temperatures ranging from 100 to 230 °C and glass‐transition temperatures oscillating between 50 and 100 °C. The thermal degradation of a‐PEAT6(a : b) began above 200 °C and concluded with a final weight loss between 60 and 90% of the initial mass. The process evolved with the formation of cyclic tartarimide units and extensive main‐chain scissions. The degradation mechanism is discussed in relation to the chemical composition and microstructure of the polymers. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 2687–2696, 2000  相似文献   

2.
The crystallization behavior of biodegradable poly(butylene succinate) and copolyesters poly(butylene succinate‐co‐propylene succinate)s (PBSPS) was investigated by using 1H NMR, DSC and POM, respectively. Isothermal crystallization kinetics of the polyesters has been analyzed by the Avrami equation. The 2.2‐2.8 range of Avrami exponential n indicated that the crystallization mechanism was a heterogeneous nucleation with spherical growth geometry in the crystallization process of polyesters. Multiple melting peaks were observed during heating process after isothermal crystallization, and it could be explained by the melting and recrystallization model. PBSPS was identified to have the same crystal structure with that of PBS by using wide‐angle X‐ray diffraction (WAXD), suggesting that only BS unit crystallized while the PS unit was in an amorphous state. The crystal structure of polyesters was not affected by the crystallization temperatures, too. Besides the normal extinction crosses under the POM, the double‐banded extinction patterns with periodic distance along the radial direction were also observed in the spherulites of PBS and PBSPS. The morphology of spherulites strongly depended on the crystallization temperature. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 420–428, 2007  相似文献   

3.
Novel multiblock poly(ester amide)s containing poly(L ‐lactide) and cycloaliphatic amide segments were synthesized from telechelic oligomer of α,ω‐hydroxyl terminated poly(L ‐lactide), 1,3‐cyclohexylbis(methylamine), and sebacoylchloride by the “two‐step” interfacial polycondensation method. The blocky nature of PEAs was established by FTIR and 1H NMR spectroscopies. The effect of relative content of ester and amide segments on the crystallization nature of PEAs was investigated by WAXD and DSC analyses. PEAs having lower content of PLLA, PEA 1 and PEA 2, showed a crystallization pattern analogous to polyamides, whereas PEA 3, having higher content of PLLA, showed two crystalline phases characterized by polyester and polyamide segments. Random nature of PEAs was observed from single Tg values. Biodegradation studies using the enzyme lipase from Candida Cylindracea showed higher degradation rate for PEA 3 than that for PEA 1 and PEA 2. FTIR, 1H NMR, and DSC analyses of the degraded products indicated the involvement of ester linkages in the degradation process. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3250–3260, 2006  相似文献   

4.
Basic structural data of two sequential poly(ester amide)s derived from glycolic acid, 1,6‐hexanediamine, and adipic acid or dodecanodioic acid have been determined by means of X‐ray and electron diffraction patterns from fibers and single crystals. Chain‐folded lamellar crystals were obtained by isothermal crystallization from diol or glycerine solutions, and the crystalline habit was investigated by real space electron microscopy. Polyethylene decoration techniques were applied to evaluate the regularity of the folding surfaces. Spherulites prepared from evaporation of formic acid solutions were also studied. The two sequential poly(ester amide)s crystallized according to triclinic and monoclinic unit cells, in which the a crystallographic parameter was close to the typical distance between hydrogen‐bonded chains. Projections viewed down the chain axis revealed differences in the packing mode since oblique and rectangular cells were found for the adipic acid and dodecanodioic acid derivatives, respectively. Both structures can be envisaged as a stacking of hydrogen‐bonded sheets although clear differences concerning the shift between consecutive sheets and the number of layers comprising the unit cell were found. The large unit cells that have been deduced seem to be a consequence of the different packing preferences of the diester and diamide moieties. Both polymers have a molecular conformation that deviates from the all‐trans conformation typical of aliphatic polyamides and polyesters with a large number of methylene groups. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 194–206, 2009  相似文献   

5.
Stereoregular poly(phenylacetylene) derivatives bearing L ‐leucine ethyl ester pendants, poly‐1 and poly‐2a , were, respectively, synthesized by the polymerization of N‐(4‐ethynylphenylcarbamoyl)‐L ‐leucine ethyl ester ( 1 ) and N‐(4‐ethynylphenyl‐carbonyl)‐L ‐leucine ethyl ester ( 2 ) using Rh(nbd)BPh4 as a catalyst, while stereoirregular poly‐2b was synthesized by solid‐state thermal polymerization of 2 . Their chiral recognition abilities for nine racemates were evaluated as chiral stationary phases (CSPs) for high‐performance liquid chromatography (HPLC) after coating them on silica gel. Both poly‐1 and poly‐2a with a helical conformation showed their characteristic recognition depending on coating solvents and the linkage groups between poly(phenylacetylene) and L ‐leucine ethyl ester pendants. Poly‐2a with a shorter amide linkage showed higher chiral recognition than poly‐1 with a longer urea linkage. Coating solvents played an important role in the chiral recognition of both poly‐1 and poly‐2a due to the different conformation of the polymer main chains induced by the solvents. A few racemates were effectively resolved on the poly‐2a coated with a MeOH/CHCl3 (3/7, v/v) mixture. The separation factors for these racemates were comparable to those obtained on the very popular CSPs derived from polysaccharide phenylcarbamates. Stereoirregular poly‐2b exhibited much lower chiral recognition than the corresponding stereoregular, helical poly‐2a , suggesting that the regular structure of poly(phenylacetylene) main chains is essential to attain high chiral recognition. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

6.
The thermal properties, crystallization, and morphology of amphiphilic poly(D ‐lactide)‐b‐poly(N,N‐dimethylamino‐2‐ethyl methacrylate) (PDLA‐b‐PDMAEMA) and poly (L ‐lactide)‐b‐poly(N,N‐dimethylamino‐2‐ethyl methacrylate) (PLLA‐b‐PDMAEMA) copolymers were studied and compared to those of the corresponding poly(lactide) homopolymers. Additionally, stereocomplexation of these copolymers was studied. The crystallization kinetics of the PLA blocks was retarded by the presence of the PDMAEMA block. The studied copolymers were found to be miscible in the melt and the glassy state. The Avrami theory was able to predict the entire crystallization range of the PLA isothermal overall crystallization. The melting points of PLDA/PLLA and PLA/PLA‐b‐PDMAEMA stereocomplexes were higher than those formed by copolymer mixtures. This indicates that the PDMAEMA block is influencing the stability of the stereocomplex structures. For the low molecular weight samples, the stereocomplexes particles exhibited a conventional disk‐shape structure and, for high molecular weight samples, the particles displayed unusual star‐like shape morphology. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 49: 1397–1409, 2011  相似文献   

7.
Well‐defined linear poly(L ‐lactide)s with one or two arms (LPLLA and 2LPLLA, respectively) and star‐shaped poly(L ‐lactide)s with four or six arms (4sPLLA and 6sPLLA, respectively) were synthesized and then used for the investigation of the thermal properties, isothermal crystallization kinetics, and spherulitic growth. The maximal melting temperature, the cold‐crystallization temperature, and the degree of crystallinity of these poly(L ‐lactide) polymers decreased with an increasing number of arms in the macromolecule. Moreover, the isothermal crystallization rate constant (K) of these poly(L ‐lactide) polymers decreased in the order of KLPLLA > K2LPLLA > K4sPLLA > K6sPLLA2, which was consistent with the variation trend of the spherulitic growth rate (G). Meanwhile, both K and G of 6sPLLA slightly increased with the increasing molecular weight of the polymer. Furthermore, both LPLLA and 2LPLLA presented spherulites with good morphology and apparent Maltese cross patterns, whereas both unclear Maltese cross patterns and imperfect crystallization were observed for the star‐shaped 4sPLLA and 6sPLLA polymers. These results indicated that both the macromolecular architecture and the molecular weight of the polymer controlled K, G, and the spherulitic morphology of these poly(L ‐lactide) polymers. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2226–2236, 2006  相似文献   

8.
Biodegradable poly(ester amide)s that contained phenylalanine residues in the main chains were synthesized by the polycondensation of di‐p‐nitrophenyl sebacate and phenylalanine 2‐aminoethyl ester. The stereoisomeric composition (L /D ratio) of the phenylalanine residue in the monomer did not affect the yield and molecular weight of the polymer much. From the optical rotations of the polymers, it was found that the L /D ratio of the phenylalanine residue in the polymer was almost equal to the L /D ratio of the phenylalanine residue in the monomer. The biodegradability of the poly(ester amide)s was studied in aqueous solutions with proteases as catalysts. The polymer with 100% L ‐phenylalanine residue was effectively degraded by α‐chymotrypsin or subtilisins. However, the replacement of 10% L ‐phenylalanine with D ‐isomer resulted in a dramatic decrease in degradability. The polymers with less than 30% L ‐isomer were hardly degraded by the enzymes. Gel permeation chromatography studies suggested that the solubility of the degradation products in water greatly affected the rate and extent of biodegradation. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 40: 385–392, 2002  相似文献   

9.
The amino acid tryptophan has been converted into acrylamide monomers using L /D ‐tryptophan methyl ester forming the enantiopure chiral monomers. Attempts were made to polymerize these monomers via reversible addition fragmentation chain transfer (RAFT) polymerization to form poly(tryptophan). Unfortunately, this proved difficult, and instead, a postpolymerization modification route was used by first synthesizing poly(pentafluorophenyl acrylate) via RAFT, which was then substituted with L ‐tryptophan methyl ester to give poly(L ‐tryptophan). The interactions of the newly synthesized tryptophan monomers, as well as previously reported phenylalanine monomers, were studied in the presence of rac‐BINOL. It has been shown that the enantiomers of tryptophan have a stronger interaction with BINOL than phenylalanine and this has been attributed to the larger π system on the side chain. By monitoring the shifts and splitting of the phenolic protons of BINOL, it has been observed that S‐BINOL interacts more favorably with L ‐monomer enantiomers and R‐BINOL with D ‐monomer enantiomers. Similar interactions have also been seen with poly(phenylalanine) and the newly synthesized poly(tryptophan) materials. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

10.
A new sequential poly(ester amide) derived from 1,12‐dodecanediol, sebacic acid, and glycine was synthesized and characterized. Its crystalline structure was studied with transmission electron microscopy and X‐ray diffraction. The results were compared with results for a related polymer, derived from glycine, 1,6‐hexanediol, and succinic acid, that produced a lower methylene/carbonyl ratio. The crystalline structures of both polymers corresponded to a periodic arrangement of two layers of hydrogen‐bonded molecular chains, whose polymethylene sequences mimicked the packing of polyethylene and the majority of polyesters. © 2001 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 39: 1036–1045, 2001  相似文献   

11.
We designed and developed novel cycloaliphatic liquid‐crystalline (LC) poly(ester amide)s to investigate the effects of nematic LC phases and hydrogen‐bonding interactions on the glass‐transition behavior. Three series of poly(ester amide)s based on commercially important poly(1,4‐cyclohexanedimethylene terephthalate) were synthesized with two new cycloaliphatic diamines {3,8‐bis(aminomethyl)‐tricyclo [5.2.1.0.(2,6)]decane (tricyclic) and 1,3‐cyclohexane bismethylene amine (monocyclic)} and a linear counterpart (1,6‐hexamethylene diamine). The compositions of the ester/amide units in the copolymers were varied up to 50% by the adjustment of the amounts of the diol and diamine in the feed. The structures of the polymers were confirmed with NMR and Fourier transform infrared, and their inherent viscosities were measured at 30 °C with an Ubbelohde viscometer. Thermal analysis revealed that the poly(ester amide)s having less than 25 mol % amide linkages were thermotropic and LC, and threadlike nematic phases were observed under a polarizing microscope. The introduction of nematic, LC phases drastically affected the glass‐transition temperatures of the copolymers, and a plot of the composition versus the glass‐transition temperature passed through a maximum for lower amide incorporation, regardless of the structural differences of the amide units (cyclic or linear). This nonlinear Flory–Fox trend was correlated to the cooperative effect of the strong alignment of polymer chains in the nematic phases and intermolecular packing induced by the hydrogen bonding in the poly(ester amide)s. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5557–5571, 2006  相似文献   

12.
The synthesis of hydroxyproline‐based telechelic prepolymers by the condensation polymerization of trans‐4‐hydroxy‐N‐benzyloxycarbonyl‐L ‐proline methyl ester was investigated. All the polymerizations were carried out in the melt with stannous octoate as the catalyst and with different diols. The products were characterized by differential scanning calorimetry, proton nuclear magnetic resonance, infrared spectrophotometry, and inherent viscosity (ηinh). According to the analytic results, the ηinh value of the prepolymers depended on the kind and amount of diols that were added. With an increase in the 1,6‐hexanediol feed from 2 to 10 mol %, there was a decrease in ηinh from 0.78 to 0.41 along with a decrease in the glass‐transition temperature (Tg ) from 63 to 42 °C. When 2 mol % of different kinds of diols were used, ηinh ranged from 0.78 to 0.21, and Tg varied from 70 to 43 °C. These new prepolymers could be linked to poly(ester‐urethane) by the chain extender 1,6‐hexamethylene diisocyanate. The poly(ester‐urethane) was amorphous, and the Tg was 76 °C. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 2449–2455, 2000  相似文献   

13.
The thermosensitivity of biodegradable and non‐toxic amphiphilic polymer derived from a naturally occurring polypeptide and a derivative of amino acid was first reported. The amphiphilic polymer consisted of poly(γ‐glutamic acid) (γ‐PGA) as a hydrophilic backbone, and L ‐phenylalanine ethyl ester (L ‐PAE) as a hydrophobic branch. Poly(γ‐glutamic acid)‐graft‐L ‐phenylalanine (γ‐PGA‐graft‐L ‐PAE) with grafting degrees of 7–49% were prepared by varying the content of a water‐soluble carbodiimide (WSC). γ‐PGA‐graft‐L ‐PAE with a grafting degree of 49% exhibited thermoresponsive phase transition behavior in an aqueous solution at around 80°C. The copolymers with grafting degrees in the range of 30–49% showed thermoresponsive properties in NaCl solution. A clouding temperature (Tcloud) could be adjusted by changing the polymer concentration and/or NaCl concentration. The thermoresponsive behavior was reversible. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

14.
The crystallization kinetics of biodegradable poly(butylene succinate‐co‐adipate) (PBS/A) copolyester was investigated by using differential scanning calorimetry (DSC) and polarized optical microscopy (POM), respectively. The Avrami and Ozawa equations were used to analyze the isothermal and nonisothermal crystallization kinetics, respectively. By using wide‐angle X‐ray diffraction (WAXD), PBS/A was identified to have the same crystal structure with that of PBS. The spherulitic growth rates of PBS/A measured in isothermal conditions are very well comparable with those measured by nonisothermal procedures (cooling rates ranged from 0.5 to 15 °C/min). The kinetic data were examined with the Hoffman–Lauritzen nucleation theory. The observed spherulites of PBS/A with different shapes and textures strongly depend on the crystallization temperatures. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 3231–3241, 2005  相似文献   

15.
A new family of biodegradable copolymers of unsaturated poly(ester amide)s (UPEAs) and saturated poly(ester amide)s (SPEAs) based on L ‐phenylalanine, aliphatic dicarboxylic acids, and aliphatic dialcohols was synthesized by solution polycondensation and characterized. These unsaturated/saturated poly(ester amide) copolymers (USPEAs) were obtained in fairly good yields with N,N‐dimethylacetamide as the solvent. The molecular weights (Mn and Mw) of the USPEAs measured by GPC ranged from 15 to 60 kg/mol with a molecular weight distribution of 1.07–1.63. The chemical structures of the USPEAs were confirmed by both IR and NMR spectra. The USPEA copolymers had glass transition temperatures lower than that of pure UPEA but higher than that of pure SPEA. An increase in the unsaturated component in the USPEA copolymers led to an increase in their glass transition temperatures. The solubility of the copolymers was good in N,N‐dimethylacetamide and dimethyl sulfoxide but poor in water, acetone, methanol, and ethyl acetate. The preliminary in vitro biodegradation properties of the USPEA copolymers were investigated in both pure phosphate buffered saline (PBS) buffer and α‐chymotrypsin solutions. The copolymers showed significantly faster weight loss in an enzyme solution than in a pure PBS buffer. Upon the adjustment of the unsaturated‐to‐saturated diester monomer feed ratio, the obtained USPEA copolymers could have controlled chemical and physical properties, such as glass transition temperatures, solubility, and biodegradability, which could easily extend their applications to biomedical and pharmaceutical areas. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1595–1606, 2007  相似文献   

16.
The crystal unit‐cell structures and the isothermal crystallization kinetics of poly(L ‐lactide) in biodegradable poly(L ‐lactide)‐block‐methoxy poly(ethylene glycol) (PLLA‐b‐MePEG) diblock copolymers have been analyzed by wide‐angle X‐ray diffraction and differential scanning calorimetry. In particular, the effects due to the presence of MePEG that is chemically connected to PLLA as well as the PLLA crystallization temperature TC are examined. Though we observe no variation of both the PLLA and MePEG crystal unit‐cell structures with the block ratio between PLLA and MePEG and TC, the isothermal crystallization kinetics of PLLA is greatly influenced by the presence of MePEG that is connected to it. In particular, the equilibrium melting temperature of PLLA, T, significantly decreases in the diblock copolymers. When the TC is high so that the crystallization is controlled by nucleation, because of the decreasing T and thereafter the nucleation density with decreasing PLLA molecular weight, the crystallinity of PLLA also decreases with a decrease in the PLLA molecular weight. While, for the lower crystallization temperature regime controlled by the growth mechanism, the crystallizability of PLLA in copolymers is greater than that of pure PLLA. This suggests that the activation energy for the PLLA segment diffusing to the crystallization site decreases in the diblocks. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 2438–2448, 2006  相似文献   

17.
Stereoregular poly(ester amide)s (PEAs) were prepared by the polycondensation method using naturally occurring D ‐xylose and aromatic diacids as the starting materials. The polymers were characterized by elemental analysis, GPC, IR, and 1H‐ and 13C NMR spectroscopies. Thermal and X‐ray diffraction studies revealed them to be mainly amorphous. The polymers are hydrophilic and their degradation studies were carried out at 37 and 80 °C in buffered salt solution at pH 8. The degradation study was monitored by mass loss, GPC, IR, and NMR spectroscopies. The hydrolytic degradation of these PEAs occurred rapidly by hydrolysis of the ester functions to a final compound, which maintained the amide functions. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

18.
A series of poly(amide–imide)s IIIa–m containing flexible isopropylidene and ether groups in the backbone were synthesized by the direct polycondensation of 4,4′‐[1,4‐phenylenebis(isopropylidene‐1,4‐phenyleneoxy)]dianiline (PIDA) with various bis(trimellitimide)s IIa–m in N‐methyl‐2‐pyrrolidone (NMP) using triphenyl phosphite and pyridine as condensing agents. The resulting poly(amide–imide)s had inherent viscosities in the range of 0.80–1.36 dL/g. Except for those from the bis(trimellitimide)s of p‐phenylenediamine and benzidine, all the polymers could be cast from DMAc into transparent and tough films. They exhibited excellent solubility in polar solvents. The 10% weight loss temperatures of the polymers in air and in nitrogen were all above 495°C, and their Tg values were in the range of 201–252°C. Some properties of poly(amide–imide)s III were compared with those of the corresponding poly(amide–imide)s V prepared from the bis(trimellitimide) of diamine PIDA and various aromatic diamines. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 69–76, 1999  相似文献   

19.
The unit cell parameters of two alternating poly(ester amide)s constituted by glycolic acid and ω‐amino acid units have been determined by interpretation of X‐ray and electron diffraction patterns. Orthorhombic unit cells containing two chain segments with a nonplanar conformation have been derived. The electron diffraction patterns were rather different from those characteristic of aliphatic polyamides and polyesters with a zig–zag conformation. Chain‐folded lamellar crystals have been obtained by isothermal crystallization of dilute diol or glycerine solutions and the crystalline habit has been studied by means of real space electron microscopy. Polyethylene decoration techniques have been applied to evaluate the regularity of the folding surfaces. Diffraction and morphologic data suggest that hydrogen bonds between amide groups were established along a single direction, which coincides with the preferential crystal growth direction. Spherulites prepared from both evaporation of formic acid solutions and melt crystallization have been also studied. Diffraction data indicate that hydrogen bonds are aligned along the spherulite radius. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 815–825, 2007  相似文献   

20.
A series of poly(butylene succinate‐co‐butylene 2‐methyl succinate)s were prepared through variations in the molar fraction of succinic acid to 2‐methyl succinic acid, and the effects of methyl substitution on the shear‐induced crystallization, nonisothermal crystallization behavior, dynamic rheological properties, crystal morphology, and mechanical properties were investigated. Introducing 2‐methyl succinic units reduced the melting temperature and crystallization temperature; this indicated that the substituted units retarded crystallization of the polymer. The Avrami exponents, estimated by modified Avrami plots, ranged from 2.1 to 3.5 and were a little diminished by the substitution. The substitution also reduced the rate of crystallization under shear. However, the effect was diminished with an increasing shear rate because most polymer chains were more regularly arranged at higher shear rates. Dynamic experiments in the solid state revealed that the peak on a plot of the loss tangent against the temperature became sharper at higher contents of the substituted unit, and the peak temperature, the glass‐transition temperature, was reduced as the content of 2‐methyl succinic acid increased. Wide‐angle X‐ray diffraction patterns showed that there was little effect of the 2‐methyl succinic acid unit on the crystal morphology. The toughness of the polymer was abruptly increased up to 350% at the expense of the tensile modulus. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1759–1766, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号