首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The morphological structure and mechanical properties of the star‐shaped solution‐polymerized styrene‐butadiene rubber (SSBR) and organically modified nanosilica powder/star‐shaped SSBR co‐coagulated rubber (N‐SSBR) both filled with silica/carbon black (CB) were studied. The results showed that, compared with SSBR, silica powder could be mixed into N‐SSBR much more rapidly, and N‐SSBR/SiO2 nanocomposite had better filler‐dispersion and processability. N‐SSBR/SiO2/CB vulcanizates displayed higher glass‐transition temperature and lower peak value of internal friction loss than SSBR/SiO2/CB vulcanizates. In the N‐SSBR/SiO2/CB vulcanizates, filler was dispersed in nano‐scale resulting in good mechanical properties. Composites filled with silica/CB doped filler exhibited more excellent mechanical properties than those filled with a single filler because of the better filler‐dispersion and stronger interfacial interaction with macromolecular chains. N‐SSBR/SiO2/CB vulcanizates exhibited preferable performance in abrasion resistance and higher bound rubber content as the blending ratio of silica to CB was 20:30. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
郑强 《高分子科学》2008,(6):751-757
The dynamic rheological properties of a composite composed of solution-polymerized styrene butadiene rubber (SSBR) filled with starch/silica (SiO_2) compound fillers were studied by means of temperature,frequency and strain sweeps, respectively,and the influence of the starch content in the compound fillers (SCCF) on the rheological behaviors was discussed.It is found from frequency sweeps that a maximum of loss tangent (tanδ) appears at 20 rad/s,which is independent of SCCF.G' of the composites decrease...  相似文献   

3.
As a widely used reinforcing filler of rubber, carbon black(CB) often enhances the nonlinear Payne effect and its mechanism still remains controversial. We adopt simultaneous measurement of rheological and electrical behaviors for styrene-butadiene rubber(SBR)/CB compounds and CB gel(CBG) during large deformation/recovery to investigate the contribution of conductive CB network evolution to the Payne effect of the compounds. In the highly filled compounds, the frequency dependence of their strain softening behavior is much more remarkable than that of their CB network breakdown during loading, while during unloading the unrecoverable filler network hardly affects the complete recovery of modulus, both revealing that their Payne effect should be dominated by the disentanglement of SBR matrix. Furthermore,the bound rubber adjacent to CB particles can accelerate the reconstruction of continuous CB network and improve the reversibility of Payne effect. This may provide new insights into the effect of filler network, bound rubber, and free rubber on the Payne effect of CB filled SBR compounds.  相似文献   

4.
5.
We used NMR relaxation and pulsed‐gradient diffusion measurements at 70 °C in precipitated silica‐filled poly(dimethylsiloxane) (PDMS; silicone rubber) after crosslinking, after subsequent devulcanization by intense ultrasound, and after subsequent revulcanization. As in unfilled PDMS, transverse relaxation displays three distinct rate components attributed to an entangled and crosslinked network (similar in T2), light sol plus dangling network fragments, and unreactive trace oligomers. Ultrasound produces copious amounts of extractable sol. The T2 relaxation times decreased modestly with increasing filler content, but they and the components' proportions correlated mainly with the sol fraction, that is, the network degradation. In rupturing the network, devulcanization produces large diffusing fragments and dangling ends; revulcanization largely reverses these effects. The rates and amplitudes of the bimodal diffusivity distribution confirmed this conclusion. The weakness of the effects of filler suggests that ultrasound devulcanization is easily adaptable to the recycling of the preponderantly particulate‐filled industrial rubbers. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 454–465, 2003  相似文献   

6.
We recently discovered that shearing particle‐reinforced rubbers in oscillation at a frequency fa at a small strain γa (e.g., ~1% strain) for time ta can often produce a spectrum hole or drop in the strain‐dependent dissipation spectra of the materials. The location of the hole (or localized perturbation in the loss modulus or loss tangent) depends on the aging strain amplitude γa. The depth of this hole is influenced by both the oscillatory aging frequency fa and the aging duration ta, and follows a simple power relationship of the product of fa and ta. The exponent for the power relationship is a function of filler concentration. These attributes of the spectral hole in filled rubbers are not sensitive to the frequency used to postanalyze the hole. This new memory effect occurs at very small strains and involves material stiffening during the strain aging, and both of those features are quite different from the Mullins effect in filled elastomers. We interpret this newly discovered memory character of filled rubbers from a much broader concept of structure pinning in a condensed frustrated system and consider that the agglomeration of filler particles in rubber matrix shares common physics with granular materials and glass‐forming materials. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 859–869, 2010  相似文献   

7.
A model for strain-dependent dynamic properties of filler loaded rubber systems has been derived based on the Links-Nodes-Blobs (L-N-B) model of percolation theory. It is the first time that a L-N-B model is applied in the study of dynamic properties of filled rubbers. The density distribution function of the number of singly connected bonds f1a(ϵ) and the apparent yield strain amplitude ϵapp that corresponds to the on-set point of corruption of the filler network are introduced in the model. Simulation results indicate that both f1a(ϵ) and ϵapp control the break-down and recombination of the filler network. Two recombination mechanism are adopted in this study. Results of simulations from the extreme ends recombination mechanism match the experimental data better than those from the zero strain recombination mechanism. Also, via the proposed model, the strain-dependent storage modulus correlates well with the peak loss modulus at a low strain range of around 0.1% to 100%. Moreover, a universal plot of the normalized storage modulus (ZL-N-B) as a function of the normalized Log strain amplitude (ϵ0app) for different rubber systems is obtained. The loss moduli of systems are also simulated by the L-N-B model.  相似文献   

8.
ABSTRACT

Silica as one the most important fillers for rubber material is routinely modified by silane to improve its compatibility with the rubber matrix. Silanization of the silica particle affects both the linear and nonlinear rheological behaviors of the compounds. Their rheological nonlinearity, however, is mostly analyzed in an indirect way from linear rheological parameters, e.g. G′(ω1, γ0) and G″(ω1, γ0), which lose their physical meaning in the nonlinear viscoelastic regime. In the present work, the nonlinearity is directly quantified by the Fourier-transform rheology (FT-Rheology) technique in terms of I3/1(ω1, γ0), the third relative higher harmonic, for unvulcanized styrene butadiene rubber compounds filled with a fixed amount of silica, but varying dosages of silane. With the proposed model for I3/1(γ0), the contributions toward nonlinearity from the filler networks at a low strain amplitude and the one from the polymer networks at high strain amplitude can be successfully separated for filled systems. The utmost nonlinearity contribution from the filler networks decreases with the silane content, which is assigned to the weakening interparticle interaction of the filler. With increasing silanization of silica, the utmost nonlinearity contribution from the polymer networks is found to increase. This nonlinear mechanical response is attributed to the enhanced interfacial interaction between the filler and polymer.  相似文献   

9.
Effects of carbon filler on the sorption and diffusion of carbon dioxide in natural rubber and in styrene-butadiene rubber have been studied. Sorption isotherms conform to Henry's law in unfilled rubber and to Langmuir's law in carbon black. The isotherms in filled rubber exhibit a combination of the two sorption modes. The Henry's law solubility parameter kD increases with carbon filler content; the Langmuir saturation constant CA initially is constant with filler level, but then decreases abruptly when carbon particles begin to aggregate. The diffusion coefficient decreases with increasing filler content, presumably owing to geometric effects and to polymer chain immobilization in the interfacial regions.  相似文献   

10.
The wet‐sliding friction characteristics of rubber compounds made of high cis‐polybutadiene were examined with a British pendulum skid tester at room temperature. Three series of compounds were prepared—unfilled or filled with carbon black at two different levels. The bulk viscoelastic properties as characterized by the bulk glass‐transition temperature for the compounds were systematically adjusted by changing the crosslinking density via sulfur vulcanization. In fact, the dynamic mechanical glass‐transition temperature for the compounds ranges between approximately ?100 and 20 °C. Consequently, the wet‐sliding friction of these rubber compounds is dramatically affected. With increasing compound glass‐transition temperature, the wet‐sliding friction increases to a maximum and then decreases. However, the rate of increase or decrease varies with the amount of filler in the compounds. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 757–771, 2003  相似文献   

11.
The intumescent flame retardant (IFR) filled polypropylene (PP) composites were prepared using a twin‐screw extruder. The tensile and impact fracture behavior of the composites were measured at room temperature. It was found that the Young's modulus increased roughly, while the tensile strength decreased slightly with increasing the IFR weight fraction; the toughening effect of the filler on the PP resin was significant. Both the V‐notched Izod impact strength and the V‐notched Charpy impact strength of the PP/IFR composites showed a nonlinear increase with increasing the filler weight fraction (φf) as φf was less than 20%, then it decreased. The limited oxygen index of the composites increases nonlinearly with increasing φf. The relationship between them obeyed a quadratic equation. The impact fracture surface was observed by means of a scanning electronic microscope to understand the toughening mechanisms for the composite systems. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
The dynamic moduli, E′ dyn, and loss tangents, tan δ, of polydimethylsiloxane and polydimethyldiphenylsiloxane polymers have been investigated by an in situ technique during γ-irradiation. These viscoelastic properties were calculated and plotted as a function of irradiation exposure time by measuring the free end displacements and resonance frequencies of polymeric cantilever reeds. The reeds were swept through a small frequency range from about 20 to 100 cycles/sec. The moles of effectively elastic chains per unit volume (v) of the two unfilled polysiloxahes were calculated from in situ modulus data and compared to values obtained utilizing the swelling technique. The approximate molecular weights between entanglements, Me, of these unfilled polymers were determined by extrapolation of moduli data to zero radiation exposure. The addition of a large silica filler, SiO2, into the polymers did not alter the crosslinking rates, and the filler did not enter into polymer—filler bonding.  相似文献   

13.
The linear and nonlinear melt viscoelastic properties for a series of carbon black‐filled polymer composites were studied. Complementary tapping‐mode atomic force microscopy (AFM) studies were used to examine the dispersion and structural correlations of the filler particles in these composites. The low‐frequency dependence of the linear viscoelastic moduli gradually changes from liquidlike behavior for the unfilled polymer to pseudosolid character for composites with more than 9 vol % carbon black filler. The plateau modulus, inferred from the linear viscoelastic response, exhibits a somewhat discontinuous change at about 9 vol % filler. On the basis of the linear viscoelastic response, we postulate that the carbon black filler forms a continuous percolated network structure beyond 9 vol % filler, considerably lower than that expected from theoretical calculations for overlapping spheres and ellipsoids. We suggest that the lower threshold for percolation is due to the polymer mediation of the filler structure, resulting from the low functionality of the polymer and, consequently, few strong polymer–filler interactions, allowing for long loops and tails that can either bridge filler particles or entangle with one another. Furthermore, the strain amplitude for the transition from linear behavior to nonlinear behavior of the modulus for the composites with greater than 9 vol % filler is independent of frequency, and this critical strain amplitude decreases with increasing filler concentration. Complementary AFM measurements suggest a well‐dispersed carbon black structure with the nearest neighbor distance showing a discontinuous decrease at about 9 vol % filler, again consistent with the formation of a filler network structure beyond 9 vol % carbon black. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 39: 256–275, 2001  相似文献   

14.
PP/TiO2 nanocomposites were prepared from an original method based on the hydrolysis‐condensation (sol–gel method) reactions of titanium alkoxide inorganic precursor premixed with polypropylene (PP) under molten conditions. Nanocomposites with a mean diameter of primary particles lower than 5 nm were then prepared. The TiO2 particle dispersion in the PP matrix was characterized over a wide length scale from the combination of small angle X‐ray scattering, transmission electron microscopy, and linear viscoelasticty of molten nanocomposites. As a result, a fractal structure of these particles was highlighted at the highest concentration (φr ≥ 0.014) with a characteristic aggregation size daggr ≈ 130 nm. The relationships between fractal structure and linear viscoelastic have been discussed from the main works of the literature on the reinforcement of nanocomposites. The drastic alteration of the terminal relaxation zone (solid‐like behavior) is correlated to the formation of an aggregate‐particle network. The study of the nonlinear viscoelastic behavior (Payne effect) agrees qualitatively with this reinforcement mechanism. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1213–1222, 2010  相似文献   

15.
以γ-巯丙基三乙氧基硅烷与己酰氯为单体,在N2保护与低温下合成偶联剂3-己酰基硫代-1-丙基三乙氧基硅烷(HXT),将HXT与双-(3-乙氧基硅基丙基)二硫化物(TESPD)分别添加于溶液聚合丁苯橡胶(SSBR)/SiO2混炼胶复合体系中.采用流变学方法表征复合体系的动态粘弹行为,发现HXT可改善填料和基体的相互作用,有效阻止SiO2粒子在加工过程中的团聚.与TESPD相比较,含HXT体系具有较高“Payne效应”临界应变值.  相似文献   

16.
《先进技术聚合物》2018,29(10):2674-2682
Solution styrene butadiene and butadiene rubber (SSBR‐BR) composites reinforced with different contents of SiO2‐graphene have been fabricated firstly. The mechanical properties of the rubber composites were comparatively investigated using tensile tests; experimental results showed that, as an overall trend, the tensile and tear strength increased with increasing contents of SiO2‐graphene. Most importantly, under the condition of simulating practical working condition, the tribological behavior of SSBR‐BR composites with different contents of SiO2‐graphene was explored via a universal ring‐plate frictional tester in detail. Combined with the surface roughness of the counterparts, the wear mechanisms were discussed for SSBR‐BR composites under the cement and asphalt counterparts. Finally, several wear mechanisms under different actual working conditions were proposed.  相似文献   

17.
We have used NMR T2 relaxation and pulsed-gradient spin-echo diffusion techniques to study properties of Arco R45M hydroxyl-terminated polybutadiene, either unfilled or containing 65 wt.% filler particles (SiO2, NaCl, Al) and cured with isophorone diisocyanate (IPDI), as functions of IPDI content. A short T2 relaxation component arises from the network (gel) whose amount is greatest (up to 92%) near NCO/OH stoichiometry. Gel fraction and stoichiometry concentration both are affected slightly by filler surface reactivity but principally by filler particle size. The diffusion rate of the nonnetwork (sol) molecules has a range of 1–2 orders of magnitude. This range is narrowest near stoichiometry for the smallest filler (SiO2), i.e., the situation in which the sol molecules are least mobile. Branching theory and the hypothesis of a layer of reduced mobility in a wide vicinity of the filler particles provides semiquantitative explanations of these observations.  相似文献   

18.
本文研究了硅烷偶联剂原位改性白炭黑对溶聚丁苯橡胶(SSBR)性能的影响,结果表明,通过哈克转矩流变仪对含有偶联剂的SSBR/白炭黑混炼胶进行原位热处理后可明显减弱混炼胶的Payne效应,改善白炭黑在橡胶基体中的分散.原位热处理方法能够明显提高硫化胶的300%定伸应力,降低动态压缩温升,同时可使硫化胶在0℃附近具有较高的损耗因子(tanδ),60℃附近具有较低的tanδ.对不同聚合方式得到的丁苯橡胶,即溶聚丁苯橡胶与乳聚丁苯橡胶(ESBR)/白炭黑复合材料的力学性能及动态力学性能进行了研究,结果表明,白炭黑在SSBR2305中分散效果优于在ESBR1502中;采用偶联剂原位改性白炭黑可以使SSBR2305硫化胶获得与ESBR1502硫化胶相当的物理机械性能,更理想的动态力学性能,从而得到力学性能、抗湿滑性、滚动阻力及耐磨性更加均衡的理想轮胎材料.通过对具有不同偶联效率的SSBR/白炭黑体系的微观结构与性能研究发现,随偶联效率的增加,其结合橡胶含量增加,Payne效应减弱;高偶联效率的S-SBR具有较低的动态压缩温升及较好的耐磨性.  相似文献   

19.
Experimental data obtained from stress–strain curves of five different textile fibers, at a series of different, constant strain rates covering a range of 61/2 decades have been used to study two methods of nonlinear viscoelastic analysis proposed elsewhere. According to the first of these, time and strain effects are factorizable so that stress σ, strain ε and time t are related by the equation σf1(ε)/ε = f(t),. This is shown to be unsatisfactory with the present materials, but an empirical modification to σf1(ε)/ε = f2(ε) + f(t) is satisfactory. According to the second, general nonlinear viscoelastic behavior can be described by an equation which reduces to the form σ/ε = F1(t) + εF2(t) + ε2F3(t) + when applied to extension at a constant strain rate. This series is shown to be strongly divergent except at fairly small stains. In fact, if it is truncated after about three terms, which are as many as can be estimated with any significance in the present experiments, it is applicable only to strains of about 3–4% and less. Numerical techniques which enable standard statistical procedures to be used have been devised to perform the above analyses and are described in detail.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号