首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
High quality single crystal CaFe4 As3 was grown by using the Sn flux method. Unlike layered CaFe2 As2 , CaFe4 As3 crystallizes in an orthorhombic three-dimensional structure. Two magnetic ordering transitions are observed at ~ 90 K and ~ 27 K, respectively. The high temperature transition is an antiferromagnetic(AF) ordering transition. However, the low temperature transition shows complex properties. It shows a ferromagnetic-like transition when a field is applied along b-axis, while antiferromagnetism-like transition when a field is applied perpendicular to b-axis. These results suggest that the low temperature transition at 27 K is a first-order transition from an AF state to a canted AF state. In addition, the low temperature electron specific heat coefficient reaches as high as 143 mJ/mol·K 2 , showing a heavy fermion behavior.  相似文献   

2.
We employ the second renormalization group method of tensor-network states to investigate thermodynamic properties of the ferromagnetic and antiferromagnetic Potts model on triangular lattices. From the temperature dependence of the internal energy and the specific heat, both the critical temperatures and critical exponents are evaluated. For the q = 3 antiferromagnetic Potts model, the critical temperature is found to be Tc = 0.627163±0.000003, which is at least one order of magnitude more accurate than that obtained by other methods.  相似文献   

3.
The self-consistent mean field approximation of the two-flavor NJL model,with a free parameter a to reflect the competition between the "direct" channel and the "exchange" channel,is employed to study the QCD phase structure at finite iso spin chemical potential μ_I,finite bary on chemical potential μ_B and finite temperature T,and especially to study the location of the QCD critical point.Our results show that in order to match the corresponding lattice results of iso spin density and energy density,the contributions of the "exchange" channel need to be considered in the framework of the NJL model,and a weighting factor α=0.5 should be taken.It is also found that for fixed isospin chemical potentials,the lower temperature of the phase transition is obtained with increasing a in the T-μ_I plane,and the largest difference of the phase transition temperature with different a's appears at μ_I~1.5 mπ.At μ_I=0 the temperature of the QCD critical end point(CEP) decreases with increasing a,while the critical baryon chemical potential increases.At high isospin chemical potential(μ_I=500 MeV),the temperature of the QCD tricritical point(TCP) increases with increasing a,and in the low temperature regions the system will transition from the pion superfluidity phase to the normal phase as μ_B increases.At low density,the critical temperature of the QCD phase transition with different a's rapidly increases with μ_I at the beginning,and then increases smoothly around μ_I 300 MeV.In the high baryon density region,the increase of the iso spin chemical potential will raise the critical baryon chemical potential of the phase transition.  相似文献   

4.
The measurements on temperature dependences of magnetic susceptibility χ(T), specific heat C(T), and electrical resistivity ρ(T) were carried out for the antiferromagnetic(AFM)(Ce_(1-x)La_x)_2Ir_3Ge_5(0 ≤ x ≤ 0.66) system. It was found that the Neel temperature TNdecreases with increasing La content x, and reaches 0 K near a critical content xcr =0.6. A new phase diagram was constructed based on these measurements. A non-Fermi liquid behavior in ρ(T) and a log T relationship in C(T) were found in the samples near xcr, indicating them to be near an AFM quantum critical point(QCP) with strong spin fluctuation. Our finding indicates that(Ce_(1-x)La_x)_2Ir_3Ge_5 may be a new platform to search for unconventional superconductivity.  相似文献   

5.
A series of hydrogenated silicon thin films were prepared by the radio frequency plasma enhanced chemical vapor deposition method (RF-PECVD) with various silane concentrations. The influence of silane concentration on structural and electrical characteristics of these films was investigated to study the phase transition region from amorphous to microcrystalline phase. At the same time, optical emission spectra (OES) from the plasma during the deposition process were monitored to get information about the plasma properties, Raman spectra were measured to study the structural characteristics of the deposited films. The combinatorial analysis of OES and Raman spectra results demonstrated that the OES can be used as a fast method to diagnose phase transition from amorphous to microcrystalline silicon. At last the physical mechanism, why both OES and Raman can be used to diagnose the phase transition, was analyzed theoretically.  相似文献   

6.
The quantum limit, where only the lowest Landau level is occupied by electrons, can be achieved under a high magnetic field when the Landau level splitting is comparable with the Fermi energy. The rather small Fermi pockets and Fermi energy in CaFeAsF reported recently make this compound a good candidate for investigating the electrical transport near the quantum limit.Here, we report high-field experiments up to 65 T on a single-crystalline CaFeAsF, which shows a metal-insulator quantum phase transition tuned by the out-of-plane magnetic field. The obtained critical exponent zν through the finite-size scaling analysis is very close to 4/3. This transition is closely associated with the evolution of electronic states approaching the quantum limit.The resistivity behaviors as a function of field and temperature were evaluated based on Adams-Holstein theory(A-H theory).Moreover, the in-plane component of the field, which does not affect the transport behavior in the classical region, suppressed the magnetoresistance near the quantum limit.  相似文献   

7.
We present low-temperature magnetization, magnetoresistance and specific heat measurements on the Kondo lattice compound CePt_3P under applied magnetic fields up to 9.0 T. At zero field, CePt_3P exhibits a moderately enhanced Sommerfeld coefficient of electronic specific heat γCe=86 mJ/mol·K~2 as well as two successive magnetic transitions of Ce 4f moments: an antiferromagnetic ordering at T_(N_1) = 3.0 K and a spin reorientation at T_(N_2)=1.9 K. The value of T_(N_1) shifts to lower temperature as magnetic field increases, and it is ultimately suppressed around B_c ~3.0 T at 1.5 K. No evidence of non-Fermi liquid behavior is observed around B_c down to the lowest temperature measured. Moreover, γ decreases monotonously with increasing the magnetic field. On the other hand, the electrical resistivity shows an anomalous temperature dependence ρ∝T~n with the exponent n decreasing monotonously from ~2.6 around B_c down to ~1.7 for B = 9.0 T. The T-B phase diagram constructed from the present experimental results of CePt_3P does not match the quantum criticality scenario of heavy fermion systems.  相似文献   

8.
Low-temperature specific heat was measured on the BaFe1.9Ni0.1As2 single crystals with critical transition temperature Tc = 20.1 K.A clear specific heat jump with the value ΔC/T|Tc ≈ 23 mJ/mol K2 was observed.In addition,a roughly linear magnetic field dependence of the electronic specific heat coefficient Δγ(H) was found in the zero-temperature limit,suggesting that at least one Fermi pocket,probably the hole derivative one,was fully gapped with a small anisotropy in the present sample.A slight curvature of the curve Δγ(H) may suggest a complex gap structure(anisotropic gap or nodes) at other Fermi surfaces.  相似文献   

9.
We have performed low temperature resistivity p(T) and specific heat C(T) measurements on a superconducting polycrystalline Nb0.75Mg0.25B2 sample. The results indicate that the superconducting transition temperature is -4.6 K. The zero temperature upper critical field determined from the resistivity and specific heat is 3123 Oe. The electronic coefficient of specific heat γn=4.51 mJmol^-1K^2 and the Debye temperature θD=419 K are obtained by fitting the zero-field specific heat data in the normal state. At low temperatures, the electronic specific heat in the superconducting state follows Ces/γnTc = 2.84 exp(-1.21Tc/T). This indicates that the superconducting pairing in Nb0.75Mg0.25B2 has s-wave symmetry.  相似文献   

10.
The structural evolution of nanostructured γ-Ni-28Fe alloy(n-Ni-Fe)(grain size d-30nm),synthesized by the mechno-chemical method,was investigated by using the internal friction technique combined with differential scanning calorimetry(DSC) in the temperature range from 300K to 670K.An internal friction peak with typical characteristics of the first-order phase transition was observed in the vicinity of 620K,which corresponds to a broad exothermic process revealed by using DSC.Theses results can be explained as the structural changes from the disordering to the ordering transition in the n-Ni-Fe sample.  相似文献   

11.
Meng Lyu 《中国物理 B》2021,30(8):87101-087101
Needle-like single crystals of CeAu2In4 have been grown from In flux and characterized as a new candidate of quasi-one-dimensional Kondo lattice compound by crystallographic, magnetic, transport, and specific-heat measurements down to very low temperatures. We observe an antiferromagnetic transition at TN ≈ 0.9 K, a highly non-mean-field profile of the corresponding peak in specific heat, and a large Sommerfeld coefficient γ =369 mJ·mol-1·K-2. The Kondo temperature TK is estimated to be 1.1 K, being low and comparable to TN. While Fermi liquid behavior is observed deep into the magnetically ordered phase, the Kadowaki-Woods ratio is much reduced relative to the expected value for Ce compounds with Kramers doublet ground state. Markedly, this feature shares striking similarities to that of the prototypical quasi-one-dimensional compounds YbNi4P2 and CeRh6Ge4 with tunable ferromagnetic quantum critical point. Given the shortest Ce-Ce distance along the needle direction, CeAu2In4 appears to be an interesting model system for exploring antiferromagnetic quantum critical behaviors in a quasi-one-dimensional Kondo lattice with enhanced quantum fluctuations.  相似文献   

12.
The paramagnetic–antiferromagnetic phase transition of a single crystal of CoO, whose first- or second-order character is controversial, has been studied using a high sensitive calorimetric technique. Although both specific heat and differential thermal analysis (DTA) trace obtained at very low temperature rate (0.1 K h−1) show strong anomalies at the Néel temperature TN, the DTA trace and that calculated from the specific heat anomaly coincides indicating a continuous phase transition. In agreement with the theoretical predictions, the specific heat follows the 3D Ising model in a temperature range of 3 K below TN. Fisher relation for antiferromagnets is also obeyed in the same temperature range.  相似文献   

13.
We investigated the coexistence of superconductivity and antiferromagnetic order in the compound Er2O2Bi with anti-ThCr2Si2-type structure through resistivity, magnetization, specific heat measurements and first-principle calculations. The superconducting transition temperature Tc of 1.23 K and antiferromagnetic transition temperature TN of 3 K are observed in the sample with the best nominal composition. The superconducting upper critical field Hc2(0) and electron-phonon coupling constant λeph in Er2O2Bi are similar to those in the previously reported non-magnetic superconductor Y2O2Bi with the same structure, indicating that the superconductivity in Er2O2Bi may have the same origin as in Y2O2Bi. The first-principle calculations of Er2O2Bi show that the Fermi surface is mainly composed of the Bi 6p orbitals both in the paramagnetic and antiferromagnetic state, implying minor effect of the 4f electrons on the Fermi surface. Besides, upon increasing the oxygen incorporation in Er2OxBi, Tc increases from 1 to 1.23 K and TN decreases slightly from 3 K to 2.96 K, revealing that superconductivity and antiferromagnetic order may compete with each other. The Hall effect measurements indicate that hole-type carrier density indeed increases with increasing oxygen content, which may account for the variations of Tc and TN with different oxygen content.  相似文献   

14.
王一旭  张虎  吴美玲  陶坤  李亚伟  颜天宝  龙克文  龙腾  庞铮  龙毅 《中国物理 B》2016,25(12):127104-127104
The magnetic properties and magnetocaloric effects(MCE) of Ho Ni Ga compound are investigated systematically.The Ho Ni Ga exhibits a weak antiferromagnetic(AFM) ground state below the Neel temperature TNof 10 K, and the AFM ordering could be converted into ferromagnetic(FM) ordering by external magnetic field. Moreover, the field-induced FM phase exhibits a high saturation magnetic moment and a large change of magnetization around the transition temperature,which then result in a large MCE. A large-?S_M of 22.0 J/kg K and a high RC value of 279 J/kg without magnetic hysteresis are obtained for a magnetic field change of 5 T, which are comparable to or even larger than those of some other magnetic refrigerant materials in the same temperature range. Besides, the μ_0H~(2/3)dependence of |?S_M~(pk)| well follows the linear fitting according to the mean-field approximation, suggesting the nature of second-order FM–PM magnetic transition under high magnetic fields. The large reversible MCE induced by metamagnetic transition suggests that Ho Ni Ga compound could be a promising material for magnetic refrigeration in low temperature range.  相似文献   

15.
王义炎  郁巧鹤  夏天龙 《中国物理 B》2016,25(10):107503-107503
Dirac semimetal is a class of materials that host Dirac fermions as emergent quasi-particles.Dirac cone-type band structure can bring interesting properties such as quantum linear magnetoresistance and large mobility in the materials.In this paper,we report the synthesis of high quality single crystals of BaMnBi_2 and investigate the transport properties of the samples.BaMnBi_2 is a metal with an antiferromagnetic transition at T_N = 288 K.The temperature dependence of magnetization displays different behavior from CaMnBi_2 and SrMnBi_2,which suggests the possible different magnetic structure of BaMnBi_2.The Hall data reveals electron-type carriers and a mobility μ(5K)= 1500 cm~2/V·s.Angle-dependent magnetoresistance reveals the quasi-two-dimensional(2D) Fermi surface in BaMnBi_2- A crossover from semiclassical MR~H~2dependence in low field to MR~H dependence in high field,which is attributed to the quantum limit of Dirac fermions,has been observed in magnetoresistance.Our results indicate the existence of Dirac fermions in BaMnBi_2.  相似文献   

16.
Millimetre-size UFe5Sn single crystals were grown by the top seed solution growth method and characterized by magnetization, 57Fe Mössbauer spectroscopy and specific heat measurements in order to study the magnetic transitions detected in powder samples at 248 and 178 K. The magnetization measurements show different behaviour along the three crystallographic directions but with similar values of spontaneous magnetization along a and c. The transition at 248 K is associated with ferromagnetic ordering of iron moments along the c-axis, while the transition at lower temperature is associated with a reorientation towards b. Mössbauer data show that this reorientation is concomitant to the ordering of the Fe2 sites, which in a large proportion remain paramagnetic between the two transition temperatures. Specific heat measurements are consistent with the establishment of magnetic ordering at 248 K, followed by a spin reorientation at 178 K, yielding γ(0 K)140 mJ/(mol K2) and θ290 K for UFe5Sn.  相似文献   

17.
The behavior of the specific heat cp, effective mass M*, and the thermal expansion coefficient of a Fermi system located near the fermion condensation quantum phase transition (FCQPT) is considered. We observe the first type behavior if the system is close to FCQPT: the specific heat , , while the thermal expansion coefficient . Thus, the Grüneisen ratio Γ(T)=/cp does not diverges. At the transition region, where the system passes over from the non-Fermi liquid to the Landau Fermi liquid, the ratio diverges as . When the system becomes the Landau Fermi liquid, Γ(T,r)∝1/r, with r being a distance from the quantum critical point. Provided the system has undergone FCQPT, the second type takes place: the specific heat behaves as , M*∝1/T, and =a+bT with a,b being constants. Again, the Grüneisen ratio diverges as .  相似文献   

18.
Specific heat studies carried out on Fe1.1Te and oxygenated Fe1.1Te and FeTe2 in the range 77-300 K exhibit interesting behavior. The specific heat of the pristine sample reveals a well known structural transition associated with antiferromagnetic ordering near 67 K with a small thermal hysteresis of ∼1 K. Contrastingly, the oxygenated samples exhibit a phase transition with a very large thermal hysteresis of ∼100 K. The specific heat transition observed at the 150 and 260 K regions in the oxygenated Fe1.1Te sample could not be captured by the magnetization measurements indicating that specific heat transitions seen in oxygenated samples may not be of magnetic origin.  相似文献   

19.
We report magnetic susceptibility and specific heat measurements on polycrystalline samples of the 30 K superconductor Ba0·6K0·4BiO3. Normal-state magnetization measurements indicate a Pauli-paramagnetic susceptibility of χpauli = 2.3 × 10−5 emu/mole, from which we infer a value for the density of states at the Fermi level of N(0) = 8.6 × 10 21ev−1cm.−3 Specific heat measurements performed between 1.6 K and 40 K indicate that considerable lattice softening occurs at low temperatures; the effective Debye temperature drops from 280 K at 35 K to 210 K at 4 K, implying that soft phonon modes are present in this compound. This result indicates that conventional phonon-mediated interactions may be responsible for the high transition temperature exhibited by Ba0·6K0·4BiO3.  相似文献   

20.
Magnetic susceptibility, X-ray and neutron diffraction measurements have been performed on Ru2FeSi intermetallic compound, which was found to be antiferromagnetic below 280 K. Neutron diffraction data obtained at 300 K indicate that Ru2FeSi exhibits a chemically ordered structure with some admixture of L21 type of ordering. The magnetic ordering observed at 4.2 and 78 K consists of two components: - a collinear one formed by ferromagnetic (111) planes coupled antiferromagnetically, - an antiferromagnetic cone spiral with propagation vector k = 0.6a*, parallel to the [001] direction. The total magnetic moment of 3.7μB at 4.2 K was found to be localized on iron ions only.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号