首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The intrinsic photocurrent generation mechanism of a self-assembled graphene p–n junction operating at 1.55 μm is investigated experimentally.It is concluded that both a photovoltage effect and a photothermoelectric effect contribute to the final photocurrent.The photocurrent signal at the p–n junction was found to be dominated by photothermoelectric current,arising from different self-assembled doping levels.  相似文献   

2.
《中国物理 B》2021,30(9):97803-097803
The optical absorption is the most important macroscopic process to characterize the microscopic optical transition in the semiconductor materials. Recently, great enhancement has been observed in the absorption of the active region within a p–n junction. In this paper, Ga As based p–i–n samples with the active region varied from 100 nm to 3 μm were fabricated and it was observed that the external quantum efficiencies are higher than the typical results, indicating a new mechanism beyond the established theories. We proposed a theoretical model about the abnormal optical absorption process in the active region within a strong electric field, which might provide new theories for the design of the solar cells,photodetectors, and other photoelectric devices.  相似文献   

3.
This paper studies the dynamics of intra-acceptor hole relaxation in Be δ -doped GaAs/AlAs multiple quantum wells (MQW) with doping at the centre by time-resolved pump-probe spectroscopy using a picosecond free electron laser for infrared experiments. Low temperature far-infrared absorption measurements clearly show three principal absorption lines due to transitions of the Be acceptor from the ground state to the first three odd-parity excited states respectively. The pump-probe experiments are performed at different temperatures and different pump pulse wavelengths. The hole relaxation time from 2p excited state to 1s ground state in MQW is found to be much shorter than that in bulk GaAs, and shown to be independent of temperature but strongly dependent on wavelength. The zone-folded acoustic phonon emission and slower decay of the wavefunctions of impurity states are suggested to account for the reduction of the 2p excited state lifetime in MQW. The wavelength dependence of the 2p lifetime is attributed to the diffusion of the Be atom δ -layer in quantum wells.  相似文献   

4.
1.3μm emitting InAs/GaAs quantum dots(QDs) have been grown by molecular beam epitaxy and QD light emitting diodes(LEDs) have been fabricated.In the electroluminescence spectra of QD LEDs,two clear peaks corresponding to the ground state emission and the excited state emission are observed.It was found that the ground state emission could be achieved by increasing the number of QDs contained in the active region because of the state filling effect.This work demonstrates a way to control and tune the emitting wavelength of QD LEDs and lasers.  相似文献   

5.
董锟  田贵花  孙越 《中国物理 B》2011,20(7):71101-071101
The spin-weighted spheroidal equation in the case of s=1/2 is thoroughly studied by using the perturbation method from the supersymmetric quantum mechanics.The first-five terms of the superpotential in the series of parameter β are given.The general form for the n-th term of the superpotential is also obtained,which could also be derived from the previous terms W k,k < n.From these results,it is easy to obtain the ground eigenfunction of the equation.Furthermore,the shape-invariance property in the series of parameter β is investigated and is proven to be kept.This nice property guarantees that the excited eigenfunctions in the series form can be obtained from the ground eigenfunction by using the method from the supersymmetric quantum mechanics.We show the perturbation method in supersymmetric quantum mechanics could completely solve the spin-weight spheroidal wave equations in the series form of the small parameter β.  相似文献   

6.
Simultaneous effect of hydrostatic pressure and polaronic mass on the binding energies of the ground and excited states of an on-center hydrogenic impurity confined in a Ga As/Ga Al As spherical quantum dot are theoretically investigated by the variational method within the effective mass approximation. The binding energy is calculated as a function of dot radius and pressure. Our findings proved that the hydrostatic pressure led to the decrease of confined energy and the increase of donor binding energy. Conduction band non-parabolicity and the polaron masses are effective in the donor binding energy which is significant for narrow dots not in the confined energy. The maximum donor binding energy achieved by the polaronic mass in the ground and excited states are 2%–19% for the narrow dots. The confined and donor binding energies approach zero as the dot size approaches infinity.  相似文献   

7.
Monolayer transition-metal dichalcogenides(TMDs) are considered to be fantastic building blocks for a wide variety of optical and optoelectronic devices such as sensors, photodetectors, and quantum emitters, owing to their direct band gap,transparency, and mechanical flexibility. The core element of many conventional electronic and optoelectronic devices is the p–n junction, in which the p-and n-types of the semiconductor are formed by chemical doping in different regions.Here, we report a series of optoelectronic studies on a monolayer WSe_2 in-plane p–n photodetector, demonstrating a lowpower dissipation by showing an ambipolar behavior with a reduced threshold voltage by a factor of two compared with the previous results on a lateral electrostatically doped WSe_2 p–n junction. The fabrication of the device is based on a polycarbonates(PC) transfer technique and hence no electron-beam exposure induced damage to the monolayer WSe_2 is expected. Upon optical excitation, the photodetector demonstrates a photoresponsivity of 0.12 mA·W~(-1) and a maximum external quantum efficiency of 0.03%. Our study provides an alternative platform for a flexible and transparent twodimensional photodetector, from which we expect to further promote the development of next-generation optoelectronic devices.  相似文献   

8.
The self-assembled InAs quantum dots (QDs) on GaAs substrates with low density (5×10^8 cm^-2) are achieved using relatively higher growth temperature and low InAs coverage by low-pressure metal-organic chemical vapour deposition. The macro-PL spectra exhibit three emission peaks at 1361, 1280 and 1204nm, corresponding to the ground level (GS), the first excited state (ES1) and the second excited state (ES2) of the QDs, respectively, which are obtained when the GaAs capping layer is grown using triethylgallium and tertiallybutylarsine. As a result of micro-PL, only a few peaks from individual dots have been observed. The exciton-biexciton behaviour was clearly observed at low temperature.  相似文献   

9.
曹文会  于海峰  田野  陈赓华  赵士平 《中国物理 B》2010,19(6):67401-067401
Switching current distributions of an Nb/Al--AlO_x/Nb Josephson junction are measured in a temperature range from 25~mK to 800~mK. We analyse the phase escape properties by using the theory of Larkin and Ovchinnikov (LO) which takes discrete energy levels into account. Our results show that the phase escape can be well described by the LO approach for temperatures near and below the crossover from thermal activation to macroscopic quantum tunneling. These results are helpful for further study of macroscopic quantum phenomena in Josephson junctions where discrete energy levels need to be considered.  相似文献   

10.
In this paper, a new photodetector, bipolar junction photogate transistor (BJPG), is proposed for CMOS imagers. Due to an injection p+n junction introduced, the photo-charges drift through the p+n junction by the applied electronic field, and on the other hand, the p+n junction injects the carriers into the channel to carry the photo-charges. Therefore this device can increase the readout rate of the pixel signal charges and the photoelectron transferring efficiency. Using this new device, a new type of logarithmic pixel circuit is obtained with a wide dynamic range which makes photo-detector more suitable for imaging the naturally illuminated scenes. The simulations show that the photo current density of BJPG increases logarithmically with the incident light power due to the introduced injection p+n junction. The noise characteristics of BJPG are analyzed in detail and a new gate-induced noise is proposed. Based on the established numerical analytical model of noise, the power spectrum density curves a  相似文献   

11.
The resonant excitation is used to generate photo-excited carriers in quantum wells to observe the process of the carriers transportation by comparing the photoluminescence results between quantum wells with and without a p-n junction.It is observed directly in experiment that most of the photo-excited carriers in quantum wells with a p-n junction escape from quantum wells and form photocurrent rather than relax to the ground state of the quantum wells.The photo absorption coefficient of multiple quantum wells is also enhanced by a p-n junction.The results pave a novel way for solar cells and photodetectors making use of low-dimensional structure.  相似文献   

12.
A new mechanism of light-to-electricity conversion that uses InGaN/GaN QWs with a p-n junction is reported.According to the well established light-to-electricity conversion theory,quantum wells(QWs) cannot be used in solar cells and photodetectors because the photogenerated carriers in QWs usually relax to ground energy levels,owing to quantum confinement,and cannot form a photocurrent.We observe directly that more than 95% of the photoexcited carriers escape from InGaN/GaN QWs to generate a photocurrent,indicating that the thermionic emission and tunneling processes proposed previously cannot explain carriers escaping from QWs.We show that photoexcited carriers can escape directly from the QWs when the device is under working conditions.Our finding challenges the current theory and demonstrates a new prospect for developing highly efficient solar cells and photodetectors.  相似文献   

13.
Absorption and carrier transport behavior plays an important role in the light-to-electricity conversion process, which is difficult to characterize. Here we develop a method to visualize such a conversion process in the InGaN/GaN multiquantum wells embedded in a p-n junction. Under non-resonant absorption conditions, a photocurrent was generated and the photoluminescence intensity decayed by more than 70% when the p-n junction out-circuit was switched from open to short. However, when the excitation photon energy decreased to the resonant absorption edge, the photocurrent dropped drastically and the photoluminescence under open and short circuit conditions showed similar intensity. These results indicate that the escaping of the photo-generated carriers from the quantum wells is closely related to the excitation photon energy.  相似文献   

14.
刘洁  王禄  孙令  王文奇  吴海燕  江洋  马紫光  王文新  贾海强  陈弘 《物理学报》2018,67(12):128101-128101
实验发现p-n结中局域载流子具有极高抽取效率,同时伴随着吸收系数的大幅度增加.本文报道上述现象的发现和验证过程,以及基于此现象的新型带间跃迁量子阱红外探测器(interband transition quantum well infrared detector,IQWIP)原型器件的性能.采用共振激发光致发光光谱技术,在InGaN量子阱、InGaAs量子阱、InAs量子点等多个材料体系中均观察到了在p-n结电场作用下的载流子高效逃逸现象,抽取效率分别为95%,87.5%,88%.利用含有InGaAs/GaAs多量子阱的PIN二极管,实验尝试了制备新型的IQWIP原型器件.在无表面减反射膜的实验条件下,利用仅100 nm的有效吸收厚度,实现了31%的外量子效率.基于这个数值推算得到量子阱的光吸收系数达到3.7×10~4cm~(-1),该数值高于传统透射实验测量体材料和量子阱结果.此外,还利用InAsSb/GaSb量子阱材料体系进行了2μm以上波长红外探测的探索.利用上述现象,有望在提高现有器件性能的同时开发出新颖的光-电转换器件.  相似文献   

15.
Resonant Raman scattering of optical phonons in self-assembled quantum dots   总被引:1,自引:0,他引:1  
We have investigated the carrier relaxation mechanism in InGaAs/GaAs quantum dots by photoluminescence excitation (PLE) spectroscopy. Near-field scanning optical microscope successfully shows that a PLE resonance at a relaxation energy of 36 meV can be seen in all single-dot luminescence spectra, and thus can be attributed to resonant Raman scattering by a GaAs LO phonon to the excitonic ground state. In addition, a number of sharp resonances observed in single-dot PLE spectra can be identified as resonant Raman features due to localized phonons, which are observed in the conventional Raman spectrum. The results reveal the mechanism for the efficient relaxation of carriers observed in self-assembled quantum dots: the carriers can relax within the continuum states, and make transitions to the excitonic ground state by phonon emission.  相似文献   

16.
Simple models of semiconductor-based double barrier resonant tunneling structures predict a large accumulation of charge carriers in the structure. These carriers can be excited optically from one subband to another generating photocurrent. In this work we have investigated the photo-induced current due to intersubband excitation in double barrier structures. We have found that the origin of the photocurrent is accumulation of quantized carriers in the emitter-barrier junction of the structure, rather than accumulation of carriers in the double barrier quantum well. This photon assisted tunneling process in double barrier structures may be used for infrared detection.  相似文献   

17.
Resonant optical pumping across the band gap was used as artificial doping in InAs/In0.15Ga0.85As/GaAs quantum dots-in-a-well infrared photodetectors. Through efficient filling of the quantum dot energy levels by simultaneous optical pumping into the ground states and the excited states of the quantum dots, the response was increased by a factor of 10. Low temperature photocurrent peaks observed at 120 and 148 meV were identified as intersubband transitions emanating from the quantum dot ground state and the quantum dot excited state, respectively by a selective increase of the electron population in the different quantum dot energy levels.  相似文献   

18.
Here we report on investigations on CdSe quantum dots incorporated in ZnSe based Schottky photodiodes with near-field shadow masks. Photoluminescence and photocurrent of individual quantum dots were studied as a function of the applied bias voltage. The exciton energy of the quantum dot ground state transition was shifted to the excitation energy by using the Stark effect tuning via an external bias voltage. Under the condition of resonance with the laser excitation energy we observed a resonant photocurrent signal due to the tunnelling of carriers out of the quantum dots at electric fields above 500 kV/cm.  相似文献   

19.
We investigate nonequilibrium transport in the absence of spin-flip energy relaxation in a few-electron quantum dot artificial atom. Novel nonequilibrium tunneling processes involving high-spin states, which cannot be excited from the ground state because of spin blockade, and other processes involving more than two charge states are observed. These processes cannot be explained by orthodox Coulomb blockade theory. The absence of effective spin relaxation induces considerable fluctuation of the spin, charge, and total energy of the quantum dot. Although these features are revealed clearly by pulse excitation measurements, they are also observed in conventional dc current characteristics of quantum dots.  相似文献   

20.
研究了响应波长在15μm附近的超长波GaAs/AlGaAs量子阱红外探测器在不同外加偏压下的光电流谱特性.光电流谱上的两个主要由于阱宽随机涨落而呈现为高斯线形的响应峰被分别指认为量子阱基态E0到第一激发态E1和第三激发态E3的跃迁.跃迁峰随着器件上外加偏压的增大而出现线性红移现象,认为这种变化起源于激发态与基态对量子阱结构中势变化敏感性的不同,采用传输矩阵方法并考虑到电子交互作用修正进行的理论计算在定量上解释了实验结果. 关键词: 量子阱红外探测器 超长波 光电流 传输矩阵  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号