首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A frequency comb spanning more than one octave has been achieved by injecting the second-harmonic generation (780 nm) of a mode-locked fiber laser (1.56 microm) into a photonic crystal fiber. We propose and realize a novel interferometric scheme for observing the carrier-envelope offset frequency of the frequency comb. Frequency noise has been observed on the measured carrier-envelope offset frequency, which has been confirmed to be generated in the photonic crystal fiber by comparing the measured beat frequencies between cw lasers and frequency combs before and after the photonic crystal fiber. The mode-locked fiber laser is considered to be an important candidate for the light source used in realizing a compact optical frequency measurement system including applications in the telecommunication bands.  相似文献   

2.
贾玉磊  朱政  韩海年  田文龙  谢阳  张龙  魏志义 《物理学报》2015,64(5):54206-054206
跨倍频程超连续光谱的产生是光学频率梳系统中测量载波包络相移频率的关键.本文采用拉锥单模光纤作为非线性光谱展宽介质, 将半导体激光(LD)抽运的掺镱硼酸钙氧钇(Yb:YCOB)振荡器输出的飞秒激光耦合到该拉锥光纤中, 通过飞秒激光在光纤中发生的相位调制、四波混频等非线性效应将光谱展宽至超过倍频程的范围.振荡器输出的飞秒激光脉冲宽度为130 fs, 中心波长为1052 nm, 重复频率为76.8 MHz, 平均功率为620 mW, 耦合进单模拉锥光纤后获得了光谱覆盖范围从550 nm至1350 nm的跨倍频程超连续光谱, 最大输出平均功率为323 mW, 耦合效率达到52%.为进一步实现全固态飞秒激光光学频率梳提供了重要基础.  相似文献   

3.
We demonstrate an all-fiber Yb:fiber frequency comb with a nonlinear-amplifying-loop-mirror-based Yb:fiber laser oscillator. The fiber-spliced hollow-core photonic bandgap fiber was used as dispersion compensator, which was also directly spliced to a piece of tapered photonic crystal fiber for an octave-spanning spectrum. The spectrum of the compressed 107 fs laser pulses was broadened, covering 600 nm to 1300 nm in a high-nonlinearity tapered fiber for f to 2 f beating. The signal-to-noise ratio of offset frequency was measured to be 22 dB.  相似文献   

4.
曹士英  蔡岳  王贵重  孟飞  张志刚  方占军  李天初 《物理学报》2011,60(9):94208-094208
本文介绍了基于掺Er光纤飞秒激光器光学频率梳中光学部分的研制. 实验上采用重复频率为230 MHz的掺Er光纤飞秒激光器,通过放大、光谱展宽以及单臂f2f系统,在优化及分析相关参数影响的基础上,获得了~30 dB信噪比f0的输出,为光纤光学频率梳的建立奠定了基础. 关键词: 掺Er光纤激光器 光学频率计量 光纤光学频率梳 光谱展宽  相似文献   

5.
A phase-locked frequency comb in the near infrared is demonstrated with a mode-locked, erbium-doped, fiber laser whose output is amplified and spectrally broadened in dispersion-flattened, highly nonlinear optical fiber to span from 1100 to >2200 nm. The supercontinuum output comprises a frequency comb with a spacing set by the laser repetition rate and an offset by the carrier-envelope offset frequency, which is detected with the standard f-to-2f heterodyne technique. The comb spacing and offset frequency are phase locked to a stable rf signal with a fiber stretcher in the laser cavity and by control of the pump laser power, respectively. This infrared comb permits frequency metrology experiments in the near infrared in a compact, fiber-laser-based system.  相似文献   

6.
We report significant enhancement (+24 dB) of the optical beat note between a 657 nm cw laser and the second-harmonic generation of the tailored continuum at 1314 nm generated with a femtosecond Cr:forsterite laser and a nonlinear fiber Bragg grating. The same continuum is used to stabilize the carrier-envelope offset frequency of the Cr:forsterite femtosecond laser and permits improved optical stabilization of the frequency comb from 1.0 to 2.2 microm. Using a common optical reference at 657 nm, a relative fractional frequency instability of 2.0 x 10(-15) is achieved between the repetition rates of Cr:forsterite and Ti:sapphire laser systems in 10 s averaging time. The fractional frequency offset between the optically stabilized frequency combs of the Cr:forsterite and Ti:sapphire lasers is +/-(0.024 +/- 6.1) x 10(-17).  相似文献   

7.
Ycas G  Osterman S  Diddams SA 《Optics letters》2012,37(12):2199-2201
We present a multibranch laser frequency comb based upon a 250 MHz mode-locked erbium-doped fiber laser that spans more than 300 THz of bandwidth, from 660 nm to 2100 nm. Light from a mode-locked Er:fiber laser is amplified and then broadened in highly-nonlinear fiber to produce substantial power at ~1050 nm. This light is subsequently amplified in Yb:fiber to produce 1.2 nJ, 73 fs pulses at 1040 nm. Extension of the frequency comb into the visible is achieved by supercontinuum generation from the 1040 nm light. Comb coherence is verified with cascaded f-2f interferometry and comparison to a frequency stabilized laser.  相似文献   

8.
A frequency comb is generated with a Cr:forsterite femtosecond laser, spectrally broadened through a highly nonlinear optical fiber to span from 1.0 to 2.2 ,m, and stabilized using the f-to-2f self-referencing technique. The repetition rate and the carrier-envelope offset frequency are stabilized to a hydrogen maser, calibrated by a cesium atomic fountain clock. Simultaneous frequency measurement of a 657-nm cw laser by use of the stabilized frequency combs from this Cr:forsterite system and a Ti:sapphire laser agree at the 10(-13) level. The frequency noise of the comb components is observed at 1064, 1314, and 1550 nm by comparing the measured beat frequencies between cw lasers and the supercontinuum frequency combs.  相似文献   

9.
A mode-locked Er:fiber laser-based optical frequency comb with high stability in the repetition frequency and carrier-envelope offset (CEO) frequency is realized. The CEO beat signal was detected right after the supercontinuum generation by a compact single-beam f–2f self-referencing interferometer, which does not require further delay compensation. The stabilized repetition frequency has an out-of-loop tracking stability of 1.3×10-13/ for an integration time τ less than 1000 s, which is limited by the stability of the frequency measurement system. The stabilized CEO frequency has a residual fluctuation of 0.52 mHz measured with a 1 s gate time. This is, to our knowledge, the highest tracking stability realized for fiber laser-based optical frequency comb. PACS 06.30.Ft; 42.60.Lh; 42.55.Wd  相似文献   

10.
Optical frequency combs generated by femtosecond fiber lasers typically exhibit significant frequency noise that causes broad optical linewidths, particularly in the comb wings and in the carrier-envelope offset frequency (f(ceo)) signal. We show these broad linewidths are mainly a result of white amplitude noise on the pump diode laser that leads to a breathing-like motion of the comb about a central fixed frequency. By a combination of passive noise reduction and active feedback using phase-lead compensation, this noise source is eliminated, thereby reducing the f(ceo) linewidth from 250 kHz to <1 Hz. The in-loop carrier-envelope offset phase jitter, integrated to 100 kHz, is 1.3 rad.  相似文献   

11.
PPLN晶体差频测量飞秒激光脉冲的载波包络相移   总被引:3,自引:0,他引:3       下载免费PDF全文
在飞秒激光频率梳系统中,通常采用自参考技术测量飞秒激光脉冲的载波包络相移,但该技术需要采用光子晶体光纤进行光谱扩展从而增加了系统的不稳定性,这种技术已经制约了高稳定度的飞秒激光频率梳的发展.采用PPLN晶体差频法测量了宽谱钛宝石振荡器输出的7fs激光脉冲的载波包络频移,得到了大于30dB的拍频信号,为研制无光纤的新一代高稳定度光学频率梳奠定了基础.  相似文献   

12.
An efficient means of isolating and detecting the carrier-envelope offset frequency signal in an optical frequency synthesizer is demonstrated. The technique uses spliced and connectorized fiber for comb broadening, a periodically poled KTP crystal for doubling 1064-nm light in the supercontinuum, and a laser-line filter at 532 nm for comb-section selection. The technique produces an offset frequency with a 40-dB signal-to-noise ratio in a resolution bandwidth of 100 kHz with as little as 55 GW/cm2 of peak pulse intensity inside the fiber. The strong signal-to-noise ratio helps realize an offset frequency signal with frequency instability of 1 mHz at 1 s when controlled through feedback to the optical power driving the femtosecond laser. PACS 06.30.Ft; 06.20.Fn; 42.62.-b; 42.60.-v  相似文献   

13.
We present full phase stabilization of an amplified Yb:fiber femtosecond frequency comb using an intracavity electro-optic modulator and an acousto-optic modulator. These transducers provide high servo bandwidths of 580 kHz and 250 kHz for f(rep) and f(ceo), producing a robust and low phase noise fiber frequency comb. The comb was self-referenced with an f-2f interferometer and phase locked to an ultrastable optical reference used for the JILA Sr optical clock at 698 nm, exhibiting 0.21 rad and 0.47 rad of integrated phase errors (over 1 mHz-1 MHz), respectively. Alternatively, the comb was locked to two optical references at 698 nm and 1064 nm, obtaining 0.43 rad and 0.14 rad of integrated phase errors, respectively.  相似文献   

14.
A passively phase-locked laser source based on compact femtosecond Er:fiber technology is introduced. The carrier-envelope offset frequency is set to zero via difference frequency generation between a soliton at a wavelength of 2?μm and a dispersive wave at 860?nm generated in the same highly nonlinear fiber. This process results in a broadband output centered at 1.55?μm. Subsequently, the 40?MHz pulse train seeds a second Er:fiber amplifier, which boosts the pulse energy up to 8?nJ at a duration of 125?fs. Excellent phase stability is demonstrated via f-to-2f spectral interferometry.  相似文献   

15.
We present a fully stabilized Yb-fiber frequency comb locked to a microwave standard and an optical reference separately. The carrier-envelope offset frequency is generated by a standard f–2f interferometer with 40 dB signal-tonoise ratio. The offset frequency and the repetition rate are stabilized simultaneously to the radio frequency reference for more than 30 hours, and the fractional Allan deviation of the comb is the same as the microwave standard of 10-12 at 1 s.Alternatively, the comb is locked to an ultra-stable optical reference at 972 nm using an intracavity electro-optic modulator,exhibiting a residual integrated phase noise of 458 mrad(1 Hz–10 MHz) and an in-loop tracking stability of 1.77× 10-18 at 1 s, which is significantly raised by six orders comparing to the case locked to the microwave frequency standard.  相似文献   

16.
飞秒钛宝石光学频率梳的精密锁定   总被引:6,自引:0,他引:6       下载免费PDF全文
经相位锁定后的飞秒钛宝石光学频率梳已经广泛用于绝对光频的测量,这是光频标领域一个革命性的突破.在自建的90MHz飞秒钛宝石激光器的基础上首先采用光子晶体光纤将其光谱展宽到一个光倍频程,接着利用锁相环技术分别将重复频率和载波包络频移同时高精度地锁定到一台稳定度为6×10-14的Cs钟上,进而得到了稳定度相同的飞秒光学频率梳.  相似文献   

17.
The repetition rate and carrier-envelope phase offset frequencies of a turnkey, all-fiber-based continuum generator were phase locked to a hydrogen maser. The frequency of the hydrogen maser was calibrated with a highly stable cesium atomic clock, and therefore a fully phase-locked optical frequency comb with well-defined absolute frequencies was obtained. In contrast with the commonly used Ti:sapphire-laser-based systems, we have accomplished a fully turnkey system with no user-adjustable parts. To evaluate the performance of this novel system, we performed absolute frequency measurements in the telecommunications region and at 1064 nm and compared them with our traditional Ti:sapphire-based comb.  相似文献   

18.
We report measurement of the first carrier-envelope offset (CEO) frequency signal from a spectrally broadened ultrafast solid-state laser oscillator operating in the 1.5 μm spectral region. The f-to-2f CEO frequency beat signal is 49 dB above the noise floor (100-kHz resolution bandwidth) and the free-running linewidth of 3.6 kHz is significantly better than typically obtained by ultrafast fiber laser systems. We used a SESAM mode-locked Er:Yb:glass laser generating 170-fs pulses at a 75 MHz pulse repetition rate with 110-mW average power. It is pumped by one standard telecom-grade 980-nm diode consuming less than 1.5 W of electrical power. Without any further pulse compression and amplification, a coherent octave-spanning frequency comb is generated in a polarization-maintaining highly-nonlinear fiber (PM-HNLF). The fiber length was optimized to yield a strong CEO frequency beat signal between the outer Raman soliton and the spectral peak of the dispersive wave within the supercontinuum. The polarization-maintaining property of the supercontinuum fiber was crucial; comparable octave-spanning supercontinua from two non-PM fibers showed higher intensity noise and poor coherence. A stable CEO-beat was observed even with pulse durations above 200 fs. Achieving a strong CEO frequency signal from relatively long pulses with moderate power levels substantially relaxes the demands on the driving laser, which is particularly important for novel gigahertz diode-pumped solid-state and semiconductor lasers.  相似文献   

19.
We link the output spectra of a Ti:sapphire and a Cr:forsterite femtosecond laser phase coherently to form a continuous frequency comb with a wavelength coverage of 0.57-1.45 microm at power levels of 1 nW to 40 microW per frequency mode. To achieve this, the laser repetition rates and the carrier-envelope offset frequencies are phase locked to each other. The coherence time between the individual components of the two combs is 40 micros. The timing jitter between the lasers is 20 fs. The combined frequency comb is self-referenced for access to its overall offset frequency. We report the first demonstration to our knowledge of an extremely broadband and continuous, high-powered and phase-coherent frequency comb from two femtosecond lasers with different gain media.  相似文献   

20.
We present measurements of the nonlinear phase noise that is due to amplitude-to-phase conversion in air-silica microstructure fiber that is utilized to broaden the frequency comb from a mode-locked femtosecond laser to an optical octave. When the octave of the continuum is employed to phase stabilize the laser-pulse train, this phase noise causes a change in the carrier-envelope phase of 3784-rad/nJ change in pulse energy. As a result, the jitter on the carrier-envelope phase that is due to fiber noise, from 0.03 Hz-55 kHz, is ~0.5rad .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号