首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
刘江美  刘文涵  滕渊洁  袁荣辉 《发光学报》2015,36(12):1477-1484
采用共沉淀法合成Fe3O4纳米颗粒,再以柠檬酸三钠还原AgNO3获得了具有SERS活性的Fe3O4@Ag磁性纳米复合材料。基于密度泛函理论(DFT)的量子化学计算方法和表面增强拉曼光谱(SERS)技术,从理论计算和实验测定表征探讨了2-噻吩甲酸(2-TCA)在Fe3O4@Ag表面的吸附行为和增强效应。结果表明:理论计算得到的拉曼光谱与实际测得的常规拉曼光谱基本一致,而在DFT理论计算中所键连的Ag原子数越多,与实测值就越接近。溶液的浓度和pH对拉曼增强效果有很大的影响,当溶液的pH=3且浓度为1×10-4 mol·L-1时有最大拉曼增强效应。峰强随2-TCA浓度的增加呈现先增大后减小的趋势,浓度过大会导致大量2-TCA分子吸附聚集在Ag表面形成局部"拥堵",阻碍了激发光尤其是光谱信号的散射通过,从而减弱了拉曼增强效应。pH的变化使溶液中2-TCA分子形态发生改变,结构形态不同,其在Ag表面的吸附方式也不同。中性C4H3SCOOH分子以环上S:形式垂直吸附键合在Ag表面,形成S—Ag配位键而产生SERS光谱。-1价C4H3SCOO-离子以S—Ag配位和O—Ag共价"双键合"侧卧方式共同吸附在Ag表面而产生SERS光谱。在Ag表面,以单独S—Ag配位键吸附或键合的能力比S—Ag配位和O—Ag共价共同吸附方式要弱,但其产生的SERS信号更强,故2-TCA中性分子比2-TCA-离子更有利于SERS的产生。随着pH值的增加,溶液中的2-TCA由中性分子逐渐转化为-1价的C4H3SCOO-离子,因而在pH>3以后,拉曼增强效应逐步减弱。  相似文献   

2.
基于表面增强拉曼光谱的鸭肉中螺旋霉素残留检测   总被引:1,自引:1,他引:0       下载免费PDF全文
洪茜  刘木华  袁海超  彭义杰  李耀  赵进辉 《发光学报》2015,36(12):1464-1468
利用表面增强拉曼光谱(SERS)法结合自适应迭代重加权惩罚最小二乘法(air-PLS)快速检测鸭肉中的螺旋霉素残留。首先采用OTR202作为SERS活性基底,确定了螺旋霉素的1 622 cm-1峰可以作为其在鸭肉提取液中残留检测的拉曼特征峰;然后,通过单因素分析法确定了实验的最佳条件,并在该条件下建立了螺旋霉素浓度范围介于4.0~50.0 mg/L之间的鸭肉提取液加标样本的标准曲线,并获得了良好的线性关系且线性回归方程为y=26.681x+1233.5,决定系数R2=0.980 2,最低检测限为4 mg/L,预测样本的平均回收率为73.38%~105.25%。研究表明,采用SERS技术可以实现鸭肉中螺旋霉素残留的快速检测。  相似文献   

3.
随着光纤制备工艺以及纳米材料制备技术的发展,光纤探针已成为一种新型的表面增强拉曼散射(SERS)基底,通过在普通单模光纤或多模光纤上制备不同的结构并修饰相应的纳米材料,可以得到多种类型的光纤表面增强拉曼散射探针,并实现较好的检测效果。但受限于光纤本身的结构,普通光纤仅能利用端面或侧表面提供拉曼检测的“热点”区域,限制了其SERS性能的进一步提高。因此制备了大孔柚子型微结构光纤(MSF)表面增强拉曼散射(SERS)探针,其中大孔柚子型MSF SERS探针结构通过一段阶跃多模光纤与柚子型微结构光纤熔接制得。实验分别对自制的纳米银溶胶基底以及大孔柚子型MSF SERS探针的SERS性能进行检测。采用溶胶自组装法制备负载银纳米颗粒的MSF SERS探针,通过控制自组装时间制备不同光纤SERS探针(Ag/MSF-x,其中x为自组装时间,分别为15、 30、 45、 60 min)。采用溶液检测方法,利用Ag/MSF-x探针对10-3 mol·L-1的亚甲基蓝(MB)探针分子进行检测,通过比较相同条件下的增强效果筛选得到Ag/MSF-45探针。为进一步检...  相似文献   

4.
颜承恩  周骏  李星  束磊  马亚楠 《发光学报》2013,34(3):382-387
采用柠檬酸三钠还原氯金酸和离子交换法制备金纳米粒子掺杂DNA-CTMA材料,利用钯催化反应合成9,9-二乙基-2,7-二-(4-吡啶)芴荧光染料(DPFP),将DPFP与DNA-CTMA混合后,旋凃制备金纳米粒子掺杂的DNA-CTMA-DPFP薄膜样品。通过吸收光谱、荧光光谱和拉曼光谱的测量,研究了薄膜样品的光学特性和表面增强拉曼散射(SERS)特性。实验结果表明,薄膜样品在300~360 nm的吸收主要来自DPFP,在500~700 nm的吸收来自样品中金纳米粒子的局域表面等离子共振;样品在370,386,408 nm处的荧光峰分别对应DPFP的S10-S00、S10-S01和S10-S02能级的电子振动跃迁;在785 nm激光激发下,薄膜样品的拉曼散射主要来自DPFP分子,随着金纳米粒子掺杂比的增大,DPFP分子的拉曼散射峰强度逐渐增强。因此,金纳米粒子掺杂DNA-CTMA薄膜适合作为多种染料分子的SERS基底。  相似文献   

5.
土壤磷素是植物最重要养分之一。磷素在土壤中动态性强,检测困难,在可见-近红外光谱范围没有明显吸收波段,因此研究基于其他光谱手段的磷素快速检测方法对于发展精细农业和智慧农业具有重要意义。拉曼光谱具有受水分干扰小,样本预处理小、与红外光谱信息互补等特点,国内外很多学者尝试了应用拉曼光谱对土壤磷素的检测。但是,拉曼信号弱,稳定性差,制约了拉曼光谱在土壤检测方面的应用。为进一步弄清拉曼光谱与磷素的定量关系,采用水溶性磷(KH2PO4)为研究对象,研究了不同磷浓度的KH2PO4溶液对拉曼光谱产生的影响。采用移动平均(MA)、 MA+基线校正(BL)、 MA+标准正态变量(SNV)、 MA+多元散射校正(MSC)对原始光谱(RS)进行预处理,分析了低浓度(0.02~5 g·L-1)与高浓度(5.21~93.87 g·L-1)区间KH2PO4拉曼光谱的变异特性及其与磷浓度之间的关系,建立了磷浓度含量的预测模型。结果表明:(1)...  相似文献   

6.
基于半导体的表面增强拉曼光谱(SERS)衬底由于高均匀性和稳定性在分子痕量检测中引起了广泛的关注,而高效的光诱导电子转移是进一步提高SERS灵敏度的关键。本工作制备了银纳米粒子/三氧化钨空心球(Ag NPs/H-WO3)肖特基结,并将其作为SERS电子转移衬底。采用532 nm激光作为激发源,亚甲基蓝分子(MB)作为拉曼探针分子,对衬底的SERS性能进行了评价。Ag NPs/H-WO3异质结构优异的SERS性能是由于等离子体Ag NPs的电磁效应和Ag NPs/H-WO3肖特基结与检测分子之间有效的电子转移过程的耦合作用。  相似文献   

7.
肌酐是肾脏疾病诊断和监测的关键生物标志物,因此,快速、灵敏的肌酐检测非常重要.本文提供了一种通过提高低温下的光子诱导电荷转移效率来促进表面增强拉曼散射光谱(SERS)活性的有效策略.采用种子生长法获得纳米金二十面体(Au20),以此作为SERS活性基底.采用极低温(98 K)SERS检测技术实现对染料分子结晶紫(CV)和生理盐水中的肌酐含量的快速、灵敏检测.实验结果表明:常温296 K下, Au20基底对CV分子的检测限(LOD)低至10–12 mol/L,并且信号均匀;低温98 K时, CV分子的LOD可达10–14 mol/L,比296 K时降低2个数量级.最后,使用Au20基底对生理盐水中的肌酐进行无标记检测.结果表明,常温296 K时该SERS基底对肌酐的LOD为10–6 mol/L, 1619 cm–1峰的线性相关系数为0.9839.低温98 K时,肌酐的浓度探测极限低至10–8 mol/L, 1619...  相似文献   

8.
设计了一种基于AgNPs-AuNPs的核-卫星纳米结构检测水样中多环芳烃芘的比色和SERS双通道传感系统。首先将单巯基β-环糊精修饰到纳米金颗粒和纳米银颗粒的表面。受益于氧化态的四甲基联苯胺的触发,当体系中存在多环芳烃芘时,纳米颗粒会自组装形成AgNPs-pyrene-AuNPs的核-卫星结构。芘分子在其中充当分子桥的作用,拉近纳米粒子距离,使得纳米粒子发生一定的聚集。所以芘分子的个数直接影响AgNPs-pyrene-AuNPs的核-卫星结构数量,使溶液颜色发生变化,能够通过目测法建立溶液颜色与芘浓度的关系;组装形成的的核-卫星结构具有非常丰富的“热点”而表现出较强的表面增强拉曼光谱(SERS)活性,可通过SERS方法实现芘分子的高灵敏高特异检测。此结构可通过比色法和SERS方法实现水中芘的高灵敏高特异性检测。该方法可以在25 min内快速完成微量芘的检测,比色法对芘的检出限为3.4μmol·L-1, SERS法的检出限为0.42μmol·L-1。根据上述原理,基于AgNPs-PAHs-AuNPs核-卫星结构的SERS传感器可用来检测水样中的...  相似文献   

9.
外泌体(Exosome)是直径大小为30~150 nm的膜性囊泡,包裹DNA/RNA, miRNA,蛋白质和脂质等多种物质并参与微环境中的生物信息传递,是理想的癌症生物标志物,在液体活检领域具有重要的应用潜力,有望成为癌症快速检测的手段之一。表面增强拉曼光谱(SERS)是分子振动光谱,可从分子水平上探测物质的精细结构和信息变化,具有“指纹图谱”的特征。采用差速离心结合超速离心的方法获得乳腺癌细胞来源的外泌体,以金溶胶为增强基底,收集外泌体及其母细胞的SERS图谱,结合多元统计分析,进行乳腺癌细胞的快速鉴别与区分。研究结果表明,乳腺癌细胞及其外泌体在500~1 600 cm-1波段范围内有特征拉曼信号,采用非标记检测所获得的图谱信息是样品“whole-organism fingerprint”整体信号的呈现。根据外泌体的拉曼表型并结合OPLS-DA分析,能够100%分辨3种不同类型的乳腺癌细胞。单细胞SERS检测联合PCA-LDA分析,区分乳腺癌细胞的准确率为83.7%。通过比较乳腺癌细胞及其外泌体的拉曼特征图谱发现,二者在拉曼谱图的波数高度表现一致,但是外泌体在特...  相似文献   

10.
运用激光拉曼光谱实验和密度泛函理论计算研究了450~1 700 cm-1光谱范围内有机-无机杂化钙钛矿材料(C6H5CH2NH3)2PbBr4的振动模式特性。对比实验所得拉曼光谱和理论计算所得拉曼光谱,发现密度泛函理论计算可以很好的模拟(C6H5CH2NH3)2PbBr4有机部分的分子振动模式。同时通过比较分析密度泛函理论计算和参考文献,对450~1 700 cm-1光谱范围内的拉曼峰的分子振动模式进行了初步的归属,并发现该光谱范围内的拉曼峰主要是由(C6H5CH2NH3)2PbBr4分子中有机部分振动所产生的。  相似文献   

11.
张燕  陈长水  肖治燕  杨立坚 《发光学报》2013,34(8):1084-1088
提出一种基于表面增强拉曼光谱的中药材肿节风饮片的检测方法。采用柠檬酸三钠还原硝酸银制备银溶胶,以银胶纳米粒子为增强基底测得肿节风茎切片的表面增强拉曼光谱(SERS)。发现银胶直接作用于药材表面的SERS信号明显增强,肿节风茎切片SERS光谱中在637,1 176,1 309,1 476,1 612 cm-1处都可观察到明显的拉曼特征峰。通过一阶导数拉曼光谱分析技术和对照品异嗪皮啶谱峰指认,可将获得的SERS峰位分别归属于吡喃酮环、甲氧基和酚羟基分子结构。研究结果表明,SERS技术可为肿节风和其他中草药的生产和质量监控提供一种快速、方便和直接的检测方法。  相似文献   

12.
采用共沉淀法合成了Fe_3O_4磁性纳米颗粒,进一步以柠檬酸三钠还原法制备出了具有SERS活性的Fe_3O_4/Ag磁性包覆修饰材料,用紫外可见吸收光谱、能谱及透射电镜对结构与形貌进行表征,发现所制备的Fe_3O_4/Ag纳米材料粒径约为30~60nm,形貌规整接近球形,经测试Fe_3O_4/Ag材料很容易被磁铁收集,能够满足分散萃取再收集的需要。根据密度泛函理论(DFT)对杀线威(Oxamyl)、Oxamyl-Ag和OxamylAg4进行了理论结构优化计算,得到了杀线威的理论拉曼光谱和与Ag表面增强拉曼光谱及其谱峰的归属,结合表面增强拉曼光谱(SERS)测定,研究了杀线威在Fe_3O_4/Ag表面的吸附行为和增强效应,测算得到杀线威在Fe_3O_4/Ag表面上的增强因子为2.08×105。研究表明:理论计算的杀线威拉曼光谱与测定的拉曼光谱具有较好的一致性,DFT理论计算中发现研究分子与活性Ag原子作用越多,与实测值常规拉曼NRS越接近;杀线威以双键侧N原子和S原子与Fe_3O_4/Ag表面吸附作用为主;双键侧N优先与Ag吸附成键后,整个分子靠近Ag表面,最终使得双键侧N原子与S原子共同吸附在Ag表面;Fe_3O_4/Ag磁性纳米复合材料具有显著的富集吸附和拉曼增强作用;可利用其作为拉曼基底,以实现SERS光谱法对杀线威农残的快速分析检测。  相似文献   

13.
汤智谋  吕振寅  张洁 《光学学报》2023,(21):310-316
利用自组装技术将单层银纳米粒子修饰到Whatman No. 1滤纸表面,成功制备了柔性表面增强拉曼散射(SERS)基底。实验结果表明:当银粒子尺寸为20 nm时,拉曼增强性能达到最佳。采用此参数制备的SERS基底对罗丹明6G(R6G)分子的检测极限为10-10 mol/L,最大增强因子为5.66×108,相对标准偏差(RSD)为10.9%。同时,该柔性基底能够准确地识别和区分多种目标分子,并具有良好的柔软性和可恢复性。此外,还结合基底的扫描电子显微镜(SEM)表征情况,利用时域有限差分(FDTD)仿真软件对样品的电磁场增强特性进行了数值分析,并对其与实验结果进行了对比。  相似文献   

14.
搭建了飞秒时间分辨受激拉曼光谱(FSRS)装置,并用于研究全反式β-胡萝卜素单重电子激发态超快内转换和振动弛豫过程.基于三脉冲“抽运-探测”方案搭建的时间分辨受激拉曼光谱装置同时实现了150fs的时间分辨率和23.7cm-1的光谱分辨率,光谱检测范围为300—4000cm-1.对全反式β-胡萝卜素电子激发态的飞秒时间分辨拉曼光谱研究表明,β-胡萝卜素被激发到S2态后,经由寿命约为0.3ps的中间态SX态实 关键词: 飞秒时间分辨拉曼光谱 β-胡萝卜素 激发态内转换 振动弛豫  相似文献   

15.
封昭  周骏  陈栋  王少敏  王小军  谢树森 《发光学报》2015,36(9):1064-1070
基于金/银纳米三明治结构的表面增强拉曼散射(SERS)特性, 实现了前列腺特异性抗原(PSA)高灵敏度免疫检测, 检测结果具有特异性。采用化学还原法制备金、银纳米粒子, 用4-巯基苯甲酸(4-MBA)及前列腺特异性抗体(Anti-PSA)链接金、银纳米粒子制备免疫探针, 在硅片表面原位生长金、银纳米粒子并链接Anti-PSA制备得到免疫基底。将免疫探针、免疫基底以及PSA组成三明治结构, 进行基于SERS特性的免疫检测。实验结果表明, 纳米银免疫探针与纳米银免疫基底组成的三明治结构具有最佳的检测效果, PSA的检测灵敏度低至1.8fg/mL(3.490吆-18mol/L), 可应用于前列腺癌症的早期检测与诊断。  相似文献   

16.
利用电解法制备的纳米银膜对β-巯基乙胺进行了SERS检测,发现其具有较好的增强效果。同时使用Hartree-Fock理论,以6-311++G(d,p)为基函数计算出了β-巯基乙胺分子的拉曼光谱。用便携式拉曼光谱仪测得巯基乙胺固体的拉曼光谱,通过比较发现理论值与实验值符合的较好。并进行正常拉曼光谱(NRS)与SERS谱的对比,分析了β-巯基乙胺分子在银膜上的可能吸附方式。  相似文献   

17.
单位点调控作为一种重要的材料修饰手段,近年来在催化、能源、环境等领域中蓬勃发展。调控单位点,可以有效地调控表面电荷、电子结构、原子空间构型,从而实现材料整体性能的提升。在拉曼检测领域,表面电荷等关键因素被广泛认可并是当下研究热点。然而,单位点对表面电荷调控,乃至对拉曼灵敏度影响尚无系统研究。该研究全新提出单位点(包括单分子、单原子、单原子中心的配体络合物等)的表面电荷调控作用并研究其对拉曼检测灵敏度的影响。其中,利用经典的特异性反应:4-氨基-3-肼基-5-巯基-1,2,4-三唑(AHMT)与甲醛生成6-巯基-5-三唑啉[4,3-b]-s-四嗪(MTT),使得经单位点AHMT调控的Ag材料具有极低的检测限10-12 mol·L-1,低于不经单位点AHMT调控表面电荷的10-9 mol·L-1,实现了对甲醛分子的超低浓度检测。还研究了单钨原子氧化物调控,对于非特异性反应中的标准分子、农药残留分子检测能力的影响。其中罗丹明6G的检测限可以从10-12 mol·L-1  相似文献   

18.
本研究采用溶剂热法成功制备了具有类富勒烯结构的羟基氯化镍纳米球,并将其作为表面增强拉曼散射(SERS)基底,以结晶紫(CV)作为探针分子,通过532 nm激发对其SERS性能进行研究。结果显示,该基底的最低检测限为10-8 mol/L。通过引入硫元素并调节反应物浓度比例,成功制备了硫-羟基氯化镍,并保持了类富勒烯结构。研究发现,掺杂硫后的基底能够更有效地增强拉曼散射效应,提高了检测灵敏度,并实现了对结晶紫(CV)的痕量检测,检测浓度可达到10-11 mol/L,提升了3个数量级。此外,通过对5000个测量点的SERS信号强度统计,得到了硫-羟基氯化镍基底的信号相对标准偏差(RSD)值为4.4%,表明其具有良好的重现性和均匀性。使用扫描电子显微镜(SEM)、透射电子显微镜(TEM)和X射线衍射仪(XRD)对羟基氯化镍和硫羟基氯化镍进行了形貌结构表征。  相似文献   

19.
新型掺杂异质结的TiO2纳米管阵列(TNAs)被广泛用作污染物的光催化剂,其残留检测通常采用其他方法。该研究制备了一种新型的TNAs/g-C3N4/Au NPs异质结,可同时用作光催化剂和SERS衬底。成功降解了结晶紫染料,并用拉曼光谱法检测了其残留浓度。在10.0μmol·L-1~100.0 pmol·L-1范围内,拉曼强度与结晶紫浓度呈良好的线性关系,检出限为87.9 pmol·L-1。制备的异质结用于废水处理和生物染色检测。在检测应用中,异质结在拉曼增强方面表现出良好的可循环性。计算出原始增强因子为7.43×106,10次循环后EF略有下降,仍为6.17×106。  相似文献   

20.
黄博  汪正坤  朱永  张洁 《光学学报》2023,(21):59-66
为了提高金属纳米粒子在光纤表面的富集密度,同时提高光纤表面增强拉曼散射(SERS)复合结构拉曼增强特性的稳定性,提出一种双金属(金和银)锥形光纤SERS探针结构。首先,采用化学还原法制备出形貌均一的金银纳米粒子;然后,采用光诱导的方法实现双金属在锥形光纤上的富集。制备的光纤SERS探针表现出良好的实验效果:对罗丹明6G(R6G)检测到的最低浓度低至10-10 mol/L;增强因子为2.07×108;相较于单金属银光纤SERS探针,双金属样品的稳定性提高了7倍(96 h后)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号