首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rajiv Kumar  S. S. Sekhon 《Ionics》2004,10(5-6):436-442
Non-aqueous polymer gel electrolytes containing trifluoromethanesulfonic acid (HCF3SO3) and polyethylene oxide (PEO) as the gelling polymer has been studied. The increase in conductivity observed with the addition of PEO to liquid electrolytes has been explained to be due to the breaking of ion aggregates present in electrolytes at higher acid concentrations. The increase in free H+ ion concentration upon breaking of ion aggregates has also been observed in pH measurements and viscosity of gel electrolytes has been found to increase with PEO addition. Polymer gel electrolytes containing dimethylacetamide (DMA) have σ ∼ 10−2 S/cm at room temperature and are stable over −50 to 125 °C range of temperature. Gels based on propylene carbonate (PC) and ethylene carbonate (EC) are stable in the −50 to 40 °C temperature range and loose their gelling nature above 40 °C.  相似文献   

2.
Rajiv Kumar  S. S. Sekhon 《Ionics》2004,10(1-2):10-16
Non-aqueous polymer gel electrolytes containing trifluoromethanesulfonic acid (HCF3SO3) and polyethylene oxide (PEO) as the gelling polymer has been studied. The increase in conductivity observed with the addition of PEO to liquid electrolytes has been explained to be due to the breaking of ion aggregates present in electrolytes at higher acid concentrations. The increase in free H+ ion concentration upon breaking of ion aggregates has also been observed in pH measurements and viscosity of gel electrolytes has been found to increase with PEO addition. Polymer gel electrolytes containing dimethylacetamide (DMA) have σ ∼ 10−2 S/cm at room temperature and are stable over −50 to 125 °C range of temperature. Gels based on propylene carbonate (PC) and ethylene carbonate (EC) are stable in the −50 to 40 °C temperature range and loose their gelling nature above 40 °C.  相似文献   

3.
A series of gel polymer electrolytes containing PVdF as homo polymer, a mixture of 1:1 Ethylene Carbonate (EC) : Propylene Carbonate (PC) as plasticizer and lithium-bistrifluoromethane sulphone imide [imide — LiN (CF3SO2)2] has been developed. Amounts of polymer (PVdF), plasticizer and the imide lithium salt have been varied as a function of their weight ratio composition in this regard. Dimensionally stable films possessing appreciable room temperature conductivity values have been obtained with respect to certain weight ratio compositions. However, conductivity data have been recorded at different possible temperatures, i.e., from 20 °C to 65 °C. XRD and DSC studies were carried out to characterize the polymer films for better amorphicity and reduced glass transition temperature, respectively. The electrochemical interface stability of the PVdF based gel polymer electrolytes over a range of storage period (24 h – 10 days) have been investigated using A.C. impedance studies. Test cells containing Li/gel polymer electrolyte (GPE)/Li have been subjected to undergo 50 charge-discharge cycles in order to understand the electrochemical performance behaviour of the dimensionally stable films of superior conductivity. The observed capacity fade of less than 20% even after 50 cycles is in favour of the electrochemical stability of the gel polymer electrolyte containing 27.5% PVdF −67.5 % EC+PC −5% imide salt. Cyclic voltammetry studies establish the possibility of a reversible intercalation — deintercalation process involving Li+ ions through the gel polymer electrolyte.  相似文献   

4.
Kumar  Rajiv  Arora  Narinder  Sharma  Shuchi  Dhiman  Naresh  Pathak  Dinesh 《Ionics》2017,23(10):2761-2766

Nano-composite polymer gel electrolytes were synthesized by using polyethylene oxide (PEO), ammonium tetrafluoroborate (NH4BF4), fumed silica (SiO2), dimethylacetamide (DMA), ethylene carbonate (EC), and propylene carbonate (PC) and characterized by conductivity studies. The effect of donor number of solvent on ionic conductivity of polymer gel electrolytes has been studied. The mechanical strength of the gel electrolytes has been increased with the addition of nano-sized fumed silica along with an enhancement in conductivity. Maximum room temperature ionic conductivity of 2.63 × 10−3 and 2.92 × 10−3 S/cm has been observed for nano-composite gel electrolytes containing 0.1 and 0.5 wt% SiO2 in DMA+1 M NH4BF4+10 wt% PEO, respectively. Nano-composite polymer gel electrolytes having DMA have been found to be thermally and electrically stable over 0 to 90 °C temperature range. Also, the change in conductivity with the passage of time is very small, which may be desirable to make applicable for various smart devices.

  相似文献   

5.
The addition of polymethyl methacrylate (PMMA) having different molecular weights to electrolytes containing ammonium trifluoromethanesulfonate (NH4CF3SO3) in diethyl carbonate (DEC) has been found to result in conductivity enhancement and to yield gel electrolytes with conductivity higher than the corresponding liquid electrolytes. The increase in conductivity has been found to be due to the dissociation of undissociated NH4CF3SO3 and ion aggregates present in the electrolytes, and this has been supported by Fourier transform infrared spectroscopy results, which suggests active interaction of PMMA and NH4CF3SO3 in these gel electrolytes. The increase in conductivity also depends upon the molecular weight of the polymer used and is relatively more for PMMA having lower molecular weight. The increase in viscosity with PMMA addition also depends upon the molecular weight of the polymer and is closely related to the conductivity behavior of these electrolytes. Polymer gel electrolytes have been found to be thermally stable up to a temperature of 125 °C.  相似文献   

6.
Nano-composite polymer electrolytes containing poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-HFP), ammonium tetrafluoroborate (NH4BF4), and nano-size fumed silica (SiO2) have been prepared and characterized by complex impedance spectroscopy. Ionic conductivity of polymer has been found to increase with the addition of NH4BF4, and a maximum conductivity of 3.62 × 10?6 S/cm has been obtained at 30 wt% NH4BF4. The formation of ion aggregates at high concentration of salt has been explained by Bjerrum’s law and mass action considerations. The conductivity of polymer electrolytes has been increased by three orders of magnitude (10?6 to 10?3 S/cm) with the addition of plasticizer, and a maximum conductivity of 1.10 × 10?3 S/cm has been observed at 80 wt% DMA. An increase in conductivity with the addition of nano-size fumed silica is attributed due to the formation of space-charge layers. A maximum conductivity of 7.20 × 10?3 S/cm has been observed for plasticized nano-composite polymer electrolytes at 3 wt% SiO2. X-ray diffraction analysis of polymer electrolyte system was also carried out. A small change in conductivity of nano-composite polymer electrolytes observed over the 30–130 °C temperature range and for a period of 30 days is also desirable for their use in various applications.  相似文献   

7.
Nano-sized silica poly(methylmethacrylate)-based gel electrolyte containing lithium hexafluorophosphate (LiPF6) was synthesized by using different binary solvent mixture (propylene carbonate(PC) and dimethylformamide (DMF) in different volume ratio). Role of DMF in PC: Higher DMF content in PC-based electrolyte shows higher ionic conductivity at all polymer content and at wide temperature regions (10-70 °C). A small increment in ionic conductivity at lower content of polymer in liquid/gel electrolyte was observed and having maximum conductivity of 13.12 mS/cm at 25 °C. Stability (mechanically and electrically), viscosity and ionic conductivity of gel electrolytes were improved with the addition of nano-sized silica at ambient temperature. Ionic conductivity of nano-sized silica-based gel electrolyte does not change much over 5o–70 °C temperature range and is factor-wise only which make indispensable in different electrochemical devices. Also polymer gel electrolyte membranes as such and with dispersed silica nano-particles were characterized through scanning electron microscope to study the morphology of gel matrix.  相似文献   

8.
Solid polymer electrolytes based on potato starch (PS) and graphene oxide (GO) have been developed in this study. Blending GO with PS has improved the ionic conductivity and mechanical properties of the electrolytes. In this work, series of polymer blend consisting of PS and GO as co-host polymer were prepared using solution cast method. The most amorphous PS-GO blend was obtained using 80 wt% of PS and 20 wt% of GO as recorded by X-ray diffraction (XRD). Incorporation of 40 wt% lithium trifluoromethanesulfonate (LiCF3SO3) into the PS-GO blend increases the conductivity to (1.48 ± 0.35) × 10?5 S cm?1. Further enhancement of conductivity was made using 1-butyl-3-methylimidazolium chloride ([Bmim][Cl]). The highest conductivity at room temperature is obtained for the electrolyte containing 30 wt% of [Bmim][Cl] with conductivity value of (4.8?0 ± 0.69) × 10?4 S cm?1. Analysis of the Fourier transform infrared spectroscopy (FTIR) spectra confirmed the interaction between LiCF3SO3, [Bmim][Cl], and PS-GO blend. The variation of the dielectric constant and modulus studies versus frequency indicates that system of PS-GO-LiCF3SO3-[Bmim][Cl] obeys non-Debye behavior.  相似文献   

9.
A series of gel polymer electrolytes (GPEs) containing lithium bis(oxalato)borate (LiBOB), propylene carbonate (PC), and ethylene carbonate (EC) have been investigated. Poly(ethylene oxide) (PEO) was used as the polymer. First, a series of liquid electrolytes was prepared by varying the Li:O ratio and obtained the best composition giving the highest conductivity of 7.1?×?10?3 S cm?1 at room temperature. Then, the PEO-based GPEs were prepared by adding different amounts of LiBOB and PEO into a mixture of equal weights of EC and PC (40 % of each from the total weight). The gel electrolyte comprises of 12.5 % of LiBOB, 7.5 % of PEO, 40 % of EC, and 40 % of PC gave the highest ionic conductivity of 5.8?×?10?3 S cm?1 at room temperature. From the DC polarization measurements, ionic nature of the gel electrolyte was confirmed. Fourier transform infrared (FTIR) spectra of electrolytes showed the Li+ ion coordination with EC and PC molecules. These interactions were exhibited in the peaks corresponding to ring breathing of EC at 893 cm?1 and ring bending of EC and symmetric ring deformation of PC at 712 and 716 cm?1 respectively. The presence of free Li+ ions and ion aggregates is evident in the peaks due to the symmetric stretching of O–B–O at 985 cm?1.  相似文献   

10.
S. Ramesh  Lim Jing Yi 《Ionics》2009,15(6):725-730
Poly(vinylchloride) (PVC) is an insulator and acts as a host in polymer electrolyte systems where addition of inorganic salt lithium trifluoromethanesulfonate (LiCF3SO3) and dibutyl phthalate (DBP) converts the system to become conductor. The conductivity of polymer electrolytes is explained on the basis of ionic mobility. Thirty-five weight percent DBP plasticized polymer electrolyte has the highest conductivity value (3.30?×?10?9 S cm?1) at 303 K. Temperature dependence of the conductivity of polymer films obeys the Arrhenius rule. X-ray diffraction (XRD) proves that addition of DBP will increase the amorphous nature of the system and lead to enhancement in ionic conductivity. Complexation between high molecular weight PVC, LiCF3SO3, and DBP is confirmed by the shifting of peaks, decreasing of peaks intensity, and broadening of peaks in XRD. Thermogravimetric analysis reveals that addition of DBP to PVC–LiCF3SO3 system reduces the stability of the film. Subsequently, thermal stability decreases with the increase in DBP content in the polymer electrolytes.  相似文献   

11.
High molecular weight polymer poly(vinylidenefluoride-co-hexafluoropropylene) (PVdF-HFP), ionic liquid 1-ethyl-3-methylimidazolium bis(fluorosulfonyl)imide (EMIMFSI), and salt lithium bis(trifluoromethanesulfonyl)imide (LiTFSI)-based free-standing and conducting ionic liquid-based gel polymer electrolytes (ILGPE) have been prepared by solution cast method. Thermal, electrical, and electrochemical properties of 80 wt% IL containing gel polymer electrolyte (GPE) are investigated by thermogravimetric (TGA), impedance spectroscopy, linear sweep voltammetry (LSV), and cyclic voltammetry (CV). The 80 wt% IL containing GPE shows good thermal stability (~?200 °C), ionic conductivity (6.42?×?10?4 S cm?1), lithium ion conductivity (1.40?×?10?4 S cm?1 at 30 °C), and wide electrochemical stability window (~?4.10 V versus Li/Li+ at 30 °C). Furthermore, the surface of LiFePO4 cathode material was modified by graphene oxide, with smooth and uniform coating layer, as confirmed by scanning electron microscopy (SEM), and with element content, as confirmed by energy dispersive X-ray (EDX) spectrum. The graphene oxide-coated LiFePO4 cathode shows improved electrochemical performance with a good charge-discharge capacity and cyclic stability up to 50 cycles at 1C rate, as compared with the without coated LiFePO4. At 30 °C, the discharge capacity reaches a maximum value of 104.50 and 95.0 mAh g?1 for graphene oxide-coated LiFePO4 and without coated LiFePO4 at 1C rate respectively. These results indicated improved electrochemical performance of pristine LiFePO4 cathode after coating with graphene oxide.  相似文献   

12.
Solid polymer electrolytes based on polyacrylonitrile (PAN) doped with ammonium thiocyanate (NH4SCN) in different molar ratios of polymer and salt have been prepared by solution-casting method using DMF as solvent. The increase in amorphous nature of the polymer electrolytes has been confirmed by XRD analysis. A shift in glass transition temperature (T g) of the PAN?:?NH4SCN electrolytes has been observed from the DSC thermograms which indicates the interaction between the polymer and the salt. From the AC impedance spectroscopic analysis, the ionic conductivity has been found to increase with increasing salt concentration up to 30 mol% of NH4SCN beyond which the conductivity decreases and the highest ambient temperature conductivity has been found to be 5.79?×?10?3 S cm?1. The temperature-dependent conductivity of the polymer electrolyte follows an Arrhenius relationship which shows hopping of ions in the polymer matrix. The dielectric loss curves for the sample 70 mol% PAN?:?30 mol% NH4SCN reveal the low-frequency β-relaxation peak pronounced at high temperature, and it may be caused by side group dipoles. The ionic transference number of polymer electrolyte has been estimated by Wagner’s polarization method, and the results reveal that the conductivity species are predominantly ions.  相似文献   

13.
Polycarbonates (4a–d) with various side chain lengths were synthesized by the reaction of 1,4-bis(hydroxyethoxy)benzene derivatives and triphosgene in the presence of pyridine. The polymer electrolytes composed of 4a–d with lithium bis(trifluoromethanesulfonyl)imide (LiN(SO2CF3)2, LiTFSI) were prepared, and their ionic conductivities and thermal and electrochemical properties were investigated. 4d-Based polymer electrolyte showed the highest ionic conductivity values of 1.0?×?10?4?S/cm at 80 °C and 1.5?×?10?6?S/cm at 30 °C, respectively, at the [LiTFSI]/[repeating unit] ratio of 1/2. Ionic conductivities of these polycarbonate-based polymer electrolytes showed the tendency of increase with increasing the chain length of oxyethylene moieties as side chains, suggestive of increased steric hindrance by side chains. Unique properties were observed for the 4a(n?=?0)-based polymer electrolyte without an oxyethylene moiety. All of polycarbonate-based polymer electrolytes showed good electrochemical and thermal stabilities as polymer electrolytes for battery application.  相似文献   

14.
Two siloxane-based di-urethanesil frameworks incorporating poly(oxyethylene) (POE) chains have been synthesized by the sol–gel process and doped with magnesium triflate (Mg(CF3SO3)2) with the goal of developing electrolytes for the fabrication of solid-state rechargeable magnesium batteries. In these matrices, short POE chains are covalently bonded to the siloxane network via urethane linkages. The xerogels have been represented by the notation d-Ut(Y) n Mg(CF3SO3)2, where Y?=?300 and 600 represents the average molecular weight of the POE chains and n stands for salt composition (molar ratio of OCH2CH2 units per Mg2+). Xerogels with compositions ranging from 2?≤?n?<?∞ were prepared. A crystalline POE/Mg(CF3SO3)2 complex of unknown stoichiometry is formed in the d-Ut(300) n Mg(CF3SO3)2 materials with n?≤?6 and in the d-Ut(600) n Mg(CF3SO3)2 materials with n?≤?5. The organically modified silicate electrolytes with the highest conductivity of the d-Ut(300) n Mg(CF3SO3)2 and d-Ut(600) n Mg(CF3SO3)2 series are the samples with n?=?6 (3.9?×?10?8 S cm?1 at 26 °C and 8.7?×?10?5 S cm?1 at 97 °C) and n?=?100 (2.63?×?10?7 S cm?1 at 20 °C and 1.4?×?10?5 S cm?1 at 85 °C), respectively. Since the electrolytes for Mg batteries that have been proposed up to now have many intrinsic problems and although the room temperature conductivity values exhibited by the systems developed in the present study are still low in view of practical application, this work opens new directions for the development of solid-state Mg ion electrolytes.  相似文献   

15.
Solid polymer electrolytes (SPEs) based on poly (vinyl chloride)/poly (ethyl methacrylate) [PVC/PEMA] blend complexed with zinc triflate [Zn(CF3SO3)2] salt have been prepared using solution casting technique. Thin film samples containing various blend ratios of PVC/PEMA with fixed composition of salt have been examined by means of complex impedance analysis, and as a consequence, the typical composition corresponding to PVC (30 wt%)/PEMA (70 wt%) has been identified as the optimized blend exhibiting the highest room temperature ionic conductivity of 10?8 Scm?1. The ionic conductivity of the optimized blend was further enhanced from 10?8 to 10?6 Scm?1 by adding the chosen salt in different weight percentages at 301 K. The occurrence of complexation of the polymer blend and an evidence of interaction of cations, namely Zn2+ ions with the polymer blend, have been confirmed by Attenuated total reflectance-Fourier transformed infrared (ATR-FTIR) spectroscopy measurement studies. The efficacy of ion-polymer interactions was estimated by means of an evaluation of transport number data pertaining to Zn2+ ions which was found to be 0.56. The apparent changes resulting in the structural properties of these polymer electrolytes possessing a honeycomb-like microporous structure were identified using X-ray diffraction (XRD) and scanning electron microscopic (SEM) studies. Such promising features of the present polymer blend electrolyte system appear to suggest possible fabrication of new rechargeable zinc batteries involving improved device characteristics.  相似文献   

16.
Poly(ethylene glycol)/poly(2-acrylamido-2-methyl-1-propane sulfonic acid) (PEG/PAMPS) with a transparent appearance were prepared in the presence of ammonium persulfate (APS) as an initiator at 70 °C for 24 h. PEG/PAMPS-based polymer gel electrolytes in a motionless and uniform state were obtained by adding the required amount of liquid electrolytes to a dry PEG/PAMPS polymer. Liquid electrolytes include organic solvents with high boiling points (-1-methyl-2-pyrrolidone (NMP) and γ-butyrolactone (GBL)) and a redox couple (alkali metal iodide salt/iodine). The optimized conditions for PEG/PAMPS-based gel electrolytes based on the salt type, the concentration of alkali metal iodide salt/iodine, and solvent volume ratio were determined to be NaI, 0.4 M NaI/0.04 M I2, and NMP:GBL (7:3, v/v), respectively. The highest ionic conductivity and the liquid electrolyte absorbency were 2.58 mS cm?1 and 3.6 g g?1 at 25 °C, respectively. The ion transport mechanism in both the polymer gel electrolytes and liquid electrolytes is investigated extensively, and their best fits with respect to the temperature dependence of the ionic conductivity are determined with the Arrhenius equation.  相似文献   

17.
Poly(butylene sulfite) (poly-1) was synthesized by cationic ring-opening polymerization of butylene sulfite (1), which was prepared by the reaction of 1,4-butanediol and thionyl chloride, with trifluoromethanesulfonic acid (TfOH) in bulk. The polymer electrolytes composed of poly-1 with lithium salts such as bis(trifluoromethanesulfonyl)imide (LiN(SO2CF3)2, LiTFSI) and bis(fluorosulfonyl)imide (LiN(SO2F)2, LiFSI) were prepared, and their ionic conductivities, thermal, and electrochemical properties were investigated. Ionic conductivities of the polymer electrolytes for the poly-1/LiTFSI system increased with lithium salt concentrations, reached maximum values at the [LiTFSI]/[repeating unit] ratio of 1/10, and then decreased in further more salt concentrations. The highest ionic conductivity values at the [LiTFSI]/[repeating unit] ratio of 1/10 were 2.36?×?10?4 S/cm at 80 °C and 1.01?×?10?5 S/cm at 20 °C. On the other hand, ionic conductivities of the polymer electrolytes for the poly-1/LiFSI system increased with an increase in lithium salt concentrations, and ionic conductivity values at the [LiFSI]/[repeating unit] ratio of 1/1 were 1.25?×?10?3 S/cm at 80 °C and 5.93?×?10?5 S/cm at 20 °C. Glass transition temperature (T g) increased with lithium salt concentrations for the poly-1/LiTFSI system, but T g for the poly-1/LiFSI system was almost constant regardless of lithium salt concentrations. Both polymer electrolytes showed high transference number of lithium ion: 0.57 for the poly-1/LiTFSI system and 0.56 for the poly-1/LiFSI system, respectively. The polymer electrolytes for the poly-1/LiTFSI system were thermally more stable than those for the poly-1/LiFSI system.  相似文献   

18.
A new series of gel polymer electrolytes (GPEs) based on an optimized composition of polymer blend-salt matrix [poly(vinyl chloride) (PVC) (30 wt%) / poly(ethyl methacrylate) (PEMA) (70 wt%): 30 wt% zinc triflate Zn(CF3SO3)2] containing different concentrations of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide (EMIMTFSI) ionic liquid has been prepared by simple solution casting technique. The prepared films of gel polymer membranes have been characterized utilizing complex impedance spectroscopy, differential scanning calorimetry (DSC), thermogravimetric (TG), and cyclic voltammetry (CV) analyses. The dielectric constant and ionic conductivity pursue similar trend with increasing EMIMTFSI concentration. The addition of ionic liquid in varied amounts into the optimized polymer blend-salt system effectively reduces the glass transition temperature (Tg) of the film as revealed from differential scanning calorimetry results. The origin of an improved thermal stability and feasible cyclic performance in respect of the best conducting sample of the resultant gel polymer electrolytes was also examined by utilizing thermogravimetric and cyclic voltammetry measurements.  相似文献   

19.
Gel polymer electrolytes were prepared using agar polymer host, NH4I, and I2 salts. The sample of agar paste with 1.0 M of NH4I and 0.2 μM of I2 exhibits the highest conductivity and lowest viscosity values at room temperature of (2.64?±?0.19)?×?10?3?S?cm?1 and 1.17?±?0.29 Pa?s, respectively. All of the gel polymer electrolytes display Arrhenian behavior, and the optimum agar paste gave the lowest activation energy of 0.25 eV. It also had a good physical appearance compared with the other samples. This gel polymer electrolyte had a good potential and was applicable to a role as electrolyte in ITO-ZnO (N719 dye)/agar paste?+?1.0 M NH4I?+?0.2 μM I2/Au-Pd-ITO dye-sensitized solar cell.  相似文献   

20.
In this study, the electrical, dielectric and morphological analysis of composite solid polymer electrolytes containing polyethylene oxide, alumina nano-fillers and tetrapropylammonium iodide are conducted. The temperature dependence of conductivity shows activation energy of 0.23, 0.20 and 0.29 eV for electrolytes containing 0, 5 and 15 wt.% alumina, respectively, when data fitted to the Arrhenius equation. These activation energy values are in good agreement with those determined from dielectric measurements. The result confirms the fact that conductivity is activated by both the mobility and the charge carrier density. The conductivity isotherms demonstrated the existence of two peaks, at 5 and 15 wt.% Al2O3 composition. The highest conductivity values of 2.4 × 10?4, 3.3 × 10?4 and 4.2 × 10?4 S cm?1 are obtained for the sample with 5 wt.% Al2O3 at 0, 12 and 24 °C, respectively, suggesting an enhancement of conductivity compared with that of alumina free samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号