首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Photodissociation of the gas-phase tri-iodide anion, I3-, was investigated using photofragment time of flight (TOF) mass spectrometry combined with the core extraction method. An analysis of the TOF profiles provided the kinetic energy and angular distributions of photofragment ions and photoneutrals, from which the photoproduct branching fractions were determined in the excitation energy range of 3.26-4.27 eV. The measurement has revealed that (1) in the entire energy range investigated, three-body dissociation occurs preferentially as the "charge-asymmetric" process I-(1S)+I(2P3/2)+I(2P3/2) with the yield of approximately 30%-40%, where the excess charge is localized on the end atoms of the dissociating I3-, and that (2) two-body dissociation via the 3Piu(0u+)<--1Sigmag+(0g+) excitation proceeds as I-(1S)+I2(X 1Sigmag+)/I2(A 3Pi1u) or I(2P3/2)+I2-(X 2Sigmau+) with the yield of approximately 60%, while that via the 1Sigmau+(0u+)<--1Sigmag+(0g+) excitation alternatively as I*(2P1/2)+I2-(X 2Sigmau+) or I-(1S)+I2(B 3Piu) with the yield of approximately 60%. Ab initio calculations including spin-orbit configuration interactions were also performed to gain precise information on the potential energy surfaces relevant to the I3- photodissociation. The calculations have shown the presence of conical intersections and avoided crossings located along the symmetric stretch coordinate near the ground-state equilibrium geometry of I3-, which play key roles for the two-body and the three-body product branching. The nonadiabatic nature of the I3- photodissociation dynamics is discussed by combining the experimental findings and the ab initio results.  相似文献   

2.
The photodissociation of gas-phase I(2)Br(-) was investigated using fast beam photofragment translational spectroscopy. Anions were photodissociated from 300 to 270 nm (4.13-4.59 eV) and the recoiling photofragments were detected in coincidence by a time- and position-sensitive detector. Both two- and three-body channels were observed throughout the energy range probed. Analysis of the two-body dissociation showed evidence for four distinct channels: Br(-) + I(2), I(-) + IBr, Br+I(2) (-), and I + IBr(-). In three-body dissociation, Br((2)P(3∕2)) + I((2)P(3∕2)) + I(-) and Br(-) + I((2)P(3∕2)) + I((2)P(3∕2)) were produced primarily from a concerted decay mechanism. A sequential decay mechanism was also observed and attributed to Br(-)((1)S)+I(2)(B(3)Π(0u) (+)) followed by predissociation of I(2)(B).  相似文献   

3.
Van der Waals clusters serve as prototypical systems for studying processes of energy transfer. The I2.Ar system has attracted particular interest due to the wide array of decay processes occurring in competition with one another. Here, we present systematic dissociative photodetachment (DPD) studies of the I2- and I2-.Ar anions in the region 4.24-4.78 eV. The resulting neutral fragments are detected by time- and position-sensitive (TPS) coincident imaging. Photofragment mass distributions and translational energy distributions from the DPD of I2- are presented and facilitate understanding of the I2.Ar system. For the I2.Ar complex, channels resulting from two-body dissociation leading to I2+Ar photoproducts are observed at all photon energies employed. We also report the first direct observation of the previously inferred three-body dissociation channel leading to I+I+Ar photoproducts. The relative intensities of each decay channel are investigated in relation to the electronic state being accessed. Translational energy distributions of the I2.Ar complex lend further insight into the decay mechanism for each channel.  相似文献   

4.
We present velocity map images of the NO, O((3)P(J)) and O((1)S(0)) photofragments from NO(2) excited in the range 7.6 to 9.0 eV. The molecule was initially pumped with a visible photon between 2.82-2.95 eV (440-420 nm), below the first dissociation threshold. A second ultraviolet laser with photon energies between 4.77 and 6.05 eV (260-205 nm) was used to pump high-lying excited states of neutral NO(2) and/or probe neutral photoproducts. Analysis of the kinetic energy release spectra revealed that the NO photofragments were predominantly formed in their ground electronic state with little kinetic energy. The O((3)P(J)) and O((1)S(0)) kinetic energy distributions were also dominated by kinetically 'cold' fragments. We discuss the possible excitation schemes and conclude that the unstable photoexcited states probed in the experiment were Rydberg states coupled to dissociative valence states. We compare our results with recent time-resolved studies using similar excitation and probe photon energies.  相似文献   

5.
The photodissociation dynamics of small I-(H2O)n(n=2-5) clusters excited to their charge-transfer-to-solvent (CTTS) states have been studied using photofragment coincidence imaging. Upon excitation to the CTTS state, two photodissociation channels were observed. The major channel (approximately 90%) is a two-body process forming neutral I+(H2O)n photofragments, and the minor channel is a three-body process forming I+(H2O)n-1+H2O fragments. Both processes display translational energy [P(ET)] distributions peaking at ET=0 with little available energy partitioned into translation. Clusters excited to the detachment continuum rather than to the CTTS state display the same two channels with similar P(ET) distributions. The observation of similar P(ET) distributions from the two sets of experiments suggests that in the CTTS experiments, I atom loss occurs after autodetachment of the excited [I(H2O)n-]* cluster or, less probably, that the presence of the excess electron has little effect on the departing I atom.  相似文献   

6.
The C((3)P) + OH(X (2)Pi) --> CO(X (1)Sigma(g)(+)) + H((2)S) reaction has been investigated by ab initio electronic structure calculations of the X(2)A' state based on the multireference (MR) internally contracted single and double configuration interaction (SDCI) method plus Davidson correction (+Q) using Dunning aug-cc-pVQZ basis sets. In particular, the multireference space is taken to be a complete active space (CAS). Improvement over previously proposed potential energy surfaces for HCO/COH is obtained in the sense that present surface describes also the potential part where the CO interatomic distance is large. A large number of geometries (around 2000) have been calculated and analytically fitted using the reproducing kernel Hilbert space (RKHS) method of Ho and Rabitz both for the two-body and three-body terms following the many-body decomposition of the total electronic energies. Results show that the global reaction is highly exothermic ( approximately 6.4 eV) and barrierless (relative to the reactant channel), while five potential barriers are located on this surface. The three minima and five saddle points observed are characterized and found to be in good agreement with previous work. The three minima correspond to the formation of HCO and COH complexes and to the CO + H products, with the COH complex being a metastable minimum relative to the product channel. The five saddle points correspond to potential barriers for both the dissociation/formation of HCO and COH into/from CO + H, to barriers for the isomerization of HCO into COH and to barriers for the inversion of HCO and COH through their respective linear configuration.  相似文献   

7.
We studied the ion-pair formation dynamics of F2 at 18.385 eV (67.439 nm) using the velocity map imaging method. It was found that there are two dissociation channels corresponding to production of F(+)((1)D(2)) + F(-)((1)S(0)) and F(+)((3)P(j)) + F(-)((1)S(0)). The measured center-of-mass translational energy distribution shows that about 98% of the dissociation occurs via the F(+)((1)D(2)) channel. The measured angular distributions of the photofragments indicate that dissociation for the F(+)((3)P(j)) channel occurs via predissociation of Rydberg states converging to F(2)(+)(A(2)Pi(u)) and dissociation for the F(+)((1)D(2)) channel involves mainly a direct perpendicular transition into the ion-pair state, or X(1)Sigma(g)(+) --> 2(1)Pi(u), which is also supported by the transition dipole moment calculations .  相似文献   

8.
Photoionization cross sections for the production of the doubly charged ion N2+ from N2 have been measured by means of synchrotron radiation in the photon energy range from 50 to 110 eV. The appearance energy for N2+ has been determined as 55.2+/-0.2 eV, i.e., about 1.3 eV higher than the spectroscopic dissociation limit leading to the charge asymmetric dissociation channel N2+(2P)+N(4S) at 53.9 eV. The onset of a second threshold at 59.9+/-0.2 eV is detected and the energy dependence of photoion intensities near the threshold regions is interpreted in terms of the Wannier theory. The production of the N2+ dication is discussed in terms of direct and indirect mechanisms for dissociative charge asymmetric photoionization and by comparison with the potential energy curves of the intermediate N(2)2+ dication. Experimental evidences for the opening of the Coulomb explosion channel N2++N+ at high photon energies are provided by measuring the kinetic energy release spectra of N2+ fragments at selected photon energies.  相似文献   

9.
The structure, stability, charge redistribution, bonding, and harmonic vibrational frequencies of rare gas containing group II-A fluorides with the general formula FMRgF (where M=Be and Mg; Rg=Ar, Kr, and Xe) have been investigated using second order M?ller-Plesset perturbation theory, density functional theory, and coupled cluster theory [CCSD(T)] methods. The species, FMRgF show a quasilinear structure at the minima and a bent structure at the transition state. The predicted species are unstable with respect to the two-body dissociation channel, leading to the global minima (MF2+Rg) on the singlet potential energy surface. However, with respect to other two-body dissociation channel (FM+RgF), they are found to be stable and have high positive energies on the same surface. The computed binding energy for the two-body dissociation channels are 94.0, 164.7, and 199.7 kJ mol(-1) for FBeArF, FBeKrF, FBeXeF, respectively, at CCSD(T) method. The corresponding energy values are 83.4, 130.7, and 180.1 kJ mol(-1) for FMgArF, FMgKrF, and FMgXeF, respectively, at the same level of theory. With respect to the three-body dissociation (FM+Rg+F) channel as well as dissociation into atomic constituent, they are also found to be stable and have high positive energies. The dissociation of the predicted species typically proceeds via MRgF bending mode at the transition state. The computed barrier heights for the transition states are 11.4, 32.2, and 57.6 kJ mol(-1) for FBeArF, FBeKrF, and FBeXeF, respectively, at the CCSD(T) method. The corresponding barrier heights for the Mg containing species are 2.1, 9.2, and 32.1 kJ mol(-1) along the series Ar--Kr--Xe, respectively. The M--Rg bond energies of the FMRgF species is significantly higher than the corresponding bond energies of the M+--Rg species ( approximately 53 and approximately 15 kJ mol(-1) for Be+--Ar and Mg+--Ar, respectively). The computed energy diagram as well as the geometrical parameters along with the AIM results suggest that the species are metastable with partial covalent character in the M--Rg bonding. Thus, it may be possible to prepare and to characterize these species using low temperature matrix isolation technique.  相似文献   

10.
Two-dimensional photoelectron spectroscopy of hydrogen iodide (HI) has been performed in the photon energy region of 11.10-14.85 eV, in order to investigate dynamical properties on autoionization and neutral dissociation of Rydberg states HI*(RA) converging to HI+(A 2Sigma1/2(+)). A two-dimensional photoelectron spectrum exhibits strong vibrational excitation of HI+(X 2Pi) over a photon energy region from approximately 12 to 13.7 eV, which is attributable to the autoionizing feature of the 5 dpi HI*(RA) state. A noticeable set of stripes in the photon energy region of 13.5-14.5 eV is assigned as resulting from autoionization of the atomic Rydberg states of I* converging to I+ (3P0 or 3P1). The formation of I* is understood in terms of predissociation of multiple HI*(RA) states by way of the repulsive Rydberg potential curves converging to HI+(4Pi1/2).  相似文献   

11.
Gas-phase alkaline earth halide anions, MgX3(-) and CaX3(-) (X = Cl, Br), were produced using electrospray and investigated using photoelectron spectroscopy at 157 nm. Extremely high electron binding energies were observed for all species and their first vertical detachment energies were measured as 6.60 +/- 0.04 eV for MgCl3(-), 6.00 +/- 0.04 eV for MgBr3(-), 6.62 +/- 0.04 eV for CaCl3(-), and 6.10 +/- 0.04 eV for CaBr3(-). The high electron binding energies indicate these are very stable anions and they belong to a class of anions, called superhalogens. Theoretical calculations at several levels of theory were carried out on these species, as well as the analogous BeX3(-). Vertical detachment energy spectra were predicted to compare with the experimental observations, and good agreement was obtained for all species. The first adiabatic detachment energies were found to be substantially lower (by about 1 eV) than the corresponding vertical detachment energies for all the MX3(-) species, indicating extremely large geometry changes between MX3(-) and MX3. We found that all the MX3(-) anions possess D3h ((1)A1') structures and are extremely stable against dissociation into MX2 and X-. The corresponding neutral species MX3, however, were found to be only weakly bound with respect to dissociation toward MX2 + X. The global minimum structures of all the MX3 neutrals were found to be C2v ((2)B2), which can be described as (X2(-))(MX+) charge-transfer complexes, whereas the MX2...X (C2v, (2)B1) van der Waals complexes were shown to be low-lying isomers.  相似文献   

12.
State-selective mass spectrometry has revealed one conclusive and another probable metastable state of the N2O2+ dication, assigned respectively as 1 3Pi at 38.5 eV and 2 3Pi at 42.5 eV. Photon coincidence experiments confirm that dissociation of 1 3Pi is preceded by a fluorescent transition to X 3Sigma- and also indicate that an identical mechanism occurs for 2 3Pi. Highly correlated MRCI calculations are performed at a range of N2O2+ geometries, from which both N-N and N-O bond stretching curves are generated. Substantial barriers along both coordinates are observed for 1 3Pi and 2 3Pi, although the increasing density of states at higher energy may allow spin-orbit or vibronic predissociation for 2 3Pi. Fragment emissions derived from N2O+ and N2O2+ are analyzed with the aid of glass filters, from which NO (X 2Pi<--A 2Sigma+) and vibrationally excited N2+ (X 2Sigmag+<--B 2Sigmau+) transitions are deduced.  相似文献   

13.
The authors have obtained rotationally resolved vacuum ultraviolet pulsed field ionization-photoelectron (vuv-PFI-PE) spectrum of HD in the photon energy range of 15.29-18.11 eV, covering the ionization transitions HD+(X 2Sigmag+,v+=0-21,N+)<--HD(X 1Sigmag+,v"=0,J"). The assignment of rotational transitions resolved in the vuv-PFI-PE vibrational bands for HD+(X 2Sigmag+,v+=0-20) and their simulation using the Buckingham-Orr-Sichel (BOS) model are presented. Rotational branches corresponding to the DeltaN=N+-J"=0, +/-1, +/-2, +/-3, and +/-4 transitions are observed in the vuv-PFI-PE spectrum of HD. The BOS simulation shows that the perturbation of vuv-PFI-PE rotational line intensities due to near resonance autoionization is very minor at v+>or=5 and decreases as v+ is increased. Thus, the rotationally resolved PFI-PE bands for HD+(v+>or=5) presented here provide reliable estimates of state-to-state cross sections for direct photoionization of HD, while the rotationally resolved PFI-PE bands for HD+(v+<5) are useful data for fundamental understanding of the near resonance autoionizing mechanism. On the basis of the rovibrational assignment of the vuv-PFI-PE bands, the ionization energies for the formation of HD+(X 2Sigmag+,v+=0-20,N+) from HD(X 1Sigmag+,v"=0,J") and the vibrational constants (omegae, omegaechie, omegaeye, and omegaeze), the rotational constants (Be and alphae), the vibrational energy spacings, and the dissociation energy for HD+(X 2Sigmag+) are determined. As expected, these values are found to be in excellent agreement with high level theoretical predictions.  相似文献   

14.
An experimental two-color photoionization dynamics study of laser-excited Br2 molecules is presented, combining pulsed visible laser excitation and tunable vacuum ultraviolet (VUV) synchrotron radiation with photoelectron imaging. The X 1Sigmag + -B 3Pi0+u transition in Br2 is excited at 527 nm corresponding predominantly to excitation of the v' = 28 vibrational level in the B 3Pi0+u state. Tunable VUV undulator radiation in the energy range of 8.40-10.15 eV is subsequently used to ionize the excited molecules to the X 2Pi32,12 state of the ion, and the ionic ground state is probed by photoelectron imaging. Similar experiments are performed using single-photon synchrotron ionization in the photon energy range of 10.75-12.50 eV without any laser excitation. Photoelectron kinetic energy distributions are extracted from the photoelectron images. In the case of two-color photoionization using resonant excitation of the intermediate B 3Pi0+u state, a broad distribution of photoelectron kinetic energies is observed, and in some cases even a bimodal distribution, which depends on the VUV photon energy. In contrast, for single-photon ionization, a single nearly Gaussian-shaped distribution is observed, which shifts to higher energy with photon energy. Simulated spectra based on Franck-Condon factors for the transitions Br2(X 1Sigmag+, v" = 0)-Br2 +(X 2Pi12,32, v+) and Br2(B 3Pi0+u, v' = 28)-Br2 +(X 2Pi12,32, v+) are generated. Comparison of these calculated spectra with the measured images suggests that the differences in the kinetic energy distributions for the two ionization processes reflect the different extensions of the vibrational wave functions in the v" = 0 electronic ground state (X 1Sigmag+) versus the electronically and vibrationally excited state (B 3Pi0+u, v' = 28).  相似文献   

15.
Van der Waals binding energies for the X-O(2) complexes (X=Xe, CH(3)I, C(3)H(6), C(6)H(12)) are determined by analysis of experimental velocity map imaging data for O((3)P(2)) atoms arising from UV-photodissociation of the complex [A. V. Baklanov et al., J. Chem. Phys. 126, 124316 (2007)]. Several dissociation pathways have been observed, we focus on the channel corresponding to prompt dissociation of X-O(2) into X+2O((3)P) fragments, which is present for complexes of O(2) with all partners X. Our method is based on analysis of the kinetic energy of all three photofragments, where the O atom kinetic energy was directly measured in the experiment and the kinetic energy of the X partner was calculated using momentum conservation, along with the measured angular anisotropy for O atom recoil. We exploit the fact that the clusters are all T-shaped or nearly T-shaped, which we also confirm by ab initio calculations, along with knowledge of the transition dipole governing radiative absorption by the complex. The effect of partitioning the kinetic energy between translation along the X-O(2) and O-O coordinates on the angular anisotropy of the O atom recoil direction is discussed. Van der Waals binding energies of 110±20 cm(-1), 280±20 cm(-1), 135±30 cm(-1), and 585±20 cm(-1) are determined for Xe-O(2), CH(3)I-O(2), C(3)H(6)-O(2), and C(6)H(12)-O(2) clusters, respectively.  相似文献   

16.
The photodissociation of manganese oxide cluster cations Mn(N)O+ (N = 2-5), into Mn(N-1)O+ (one-atom loss) and Mn(N-2)O+ (two-atom), was investigated in the photon-energy range of 1.08-2.76 eV. The bond-dissociation energies D0(Mn(N-1)O+...Mn) for N = 3, 4, and 5 were determined to be 1.84+/-0.03, 0.99+/-0.05, and 1.25+/-0.14 eV, respectively, from the threshold energies for the one- and two-atom losses. As Mn2O+ did not dissociate even at the highest photon energy used, the bond dissociation energy of Mn2O+, D0(Mn+...MnO), was obtained from a density-functional-theory calculation to be 3.04 eV. The present findings imply that the core ion Mn2O+ is bound weakly with the rest of the manganese atoms in Mn(N)O+.  相似文献   

17.
The photodissociation of CF(3)I at 304 nm has been studied using long time-delayed core-sampling photofragment translational spectroscopy. Due to its capability of detecting the kinetic energy distribution of iodine fragments with high resolution, it is able to directly assign the vibrational state distribution of CF(3) fragments. The vibrational state distributions of CF(3) fragments in the I(*)((2)P(12)) channel, i.e., (3)Q(0+) state, have a propensity of the nu(2) (') umbrella mode with a maximum distribution at the vibrational ground state. For the I((2)P(32)) channel, i.e., (1)Q(1)<--(3)Q(0+), the excitation of the nu(2) (') umbrella mode accounts for the majority of the vibrational excitation of the CF(3) fragments. The 1 nu(1) (') (symmetric CF stretch) +nnu(2) (') combination modes, which are associated with the major progression of the nu(2) (') umbrella mode, are observed for the photodissociation of CF(3)I at the I channel, i.e., (3)Q(1) state. The bond dissociation energy of the CI bond of CF(3)I is determined to be D(0)(CF(3)-I)相似文献   

18.
The 1,1-dimethylhydrazine ion ((CH3)2NNH2+*) has two low-energy dissociation channels, the loss of a hydrogen atom to form the fragment ion m/z 59, (CH3)(CH2)NNH2+, and the loss of a methyl radical to form the fragment ion m/z 45, the methylhydrazyl cation, CH3NNH2+. The dissociation of the 1,1-dimethylhydrazine ion has been investigated using threshold photoelectron-photoion coincidence (TPEPICO) spectroscopy, in the photon energy range 8.25-31 eV, and tandem mass spectrometry. Theoretical breakdown curves have been obtained from a variational transition state theory (VTST) modeling of the two reaction channels and compared to those obtained from experiment. Seven transition states have been found at the B3-LYP/6-31+G(d) level of theory for the methyl radical loss channel in the internal energy range of 2.32-3.56 eV. The methyl loss channel transition states are found at R(N-C) = 4.265, 4.065, 3.965, 3.165, 2.765, 2.665, and 2.565 A over this internal energy range. Three transition states have been found for the hydrogen atom loss channel: R(H-C) = 2.298, 2.198, and 2.098 A. The DeltaS++(45) value, at an internal energy of 2.32 eV and a bond distance of R(N-C) = 4.265 A, is 65 J K-1 mol-1. As the internal energy increases to 3.56 eV the variational transition state moves to lower R value so that at R(N-C) = 2.565 A, the DeltaS++ decreases to 29 J K-1 mol-1. For the hydrogen atom loss channel the variation in DeltaS++ is less than that for the methyl loss channel. To obtain agreement with the experimental breakdown curves, DeltaS++(59) = 26-16 J K-1 mol-1 over the studied internal energy range. The 0 K enthalpies of formation (DeltafH0) for the two fragment ions m/z 45 and m/z 59 have been calculated from the 0 K activation energies (E0) obtained from the fitting procedure: DeltafH0[CH3NNH2+] = 906 +/- 6 kJ mol-1 and DeltafH0[(CH3)(CH2)NNH2+] = 822 +/- 7 kJ mol-1. The calculated G3 values are DeltafH0[CH3NNH2+] = 911 kJ mol-1 and DeltafH0[(CH3)(CH2)NNH2+] = 825 kJ mol-1. In addition to the two low-energy dissociation products, 21 other fragment ions have been observed in the dissociation of the 1,1-dimethylhydrazine ion as the photon energy was increased. Their appearance energies are reported.  相似文献   

19.
Rotationally resolved pulsed field ionization and zero electronic kinetic energy photoelectron spectra for the transition F(2) (+)(X (2)Pi(g))<--F(2)(X (1)Sigma(g) (+)) have been recorded using the extreme ultraviolet coherence radiation. The vibrational energy spacings, rotational constants, and spin orbit coupling constants for the first three vibrational states of F(2) (+)(X (2)Pi(g)) have been determined accurately. The first adiabatic ionization potential (IP) of F(2) is determined as IP(F(2))=126 585.7+/-0.5 cm(-1). To determine the threshold E(tipp) for ion-pair production of F(2), the images of F(-)((1)S(0)) in the velocity mapping conditions have also been recorded at the photon energy of 126 751 cm(-1). Taking the Stark effect into account, the E(tipp) is determined as E(tipp)(F(2))=126 045+/-8 cm(-1) (15.628+/-0.001 eV). By combing the IP(F(2)) and the E(tipp)(F(2)) determined in this work and together with the reported ionization potential and electronic affinity of the F atom, the bond dissociation energies of F(2) and F(2) (+) are determined as D(0)(F(2))=1.606+/-0.001 eV and D(0)(F(2) (+))=3.334+/-0.001 eV, respectively.  相似文献   

20.
The interaction of SF(5)CF(3) with vacuum-UV radiation has been investigated by photon induced fluorescence spectroscopy. Total fluorescence yield and dispersed fluorescence spectra of SF(5)CF(3) were recorded in the 200-1000 nm fluorescence window. In all cases, the fluorescence spectra resemble those of CF(3)X (X = H, F, Cl, and Br) molecules. At photon energies below 20 eV, the emission is attributed to the excited CF(3) and CF(2) fragments. The threshold for the CF(3) emission is 10.2 +/- 0.2 eV, giving an upper limit estimate for the SF(5)-CF(3) bond dissociation energy of 3.9 +/- 0.3 eV. The excitation functions of the CF(3) and CF(2) emissions were measured in the photon energy range 13.6-27.0 eV. The resonant structures observed in SF(5)CF(3) are attributed to electronic transitions from valence to Rydberg orbitals, following similar assignments in CF(3)X molecules. The photoabsorption spectrum of SF(5)CF(3) shows features at the same energies, indicating a strong contribution from Rydberg excitations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号